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Abstract

We show how to teach machines to paint like human
painters, who can use a small number of strokes to cre-
ate fantastic paintings. By employing a neural renderer
in model-based Deep Reinforcement Learning (DRL), our
agents learn to determine the position and color of each
stroke and make long-term plans to decompose texture-
rich images into strokes. Experiments demonstrate that
excellent visual effects can be achieved using hundreds of
strokes. The training process does not require the expe-
rience of human painters or stroke tracking data. The
code is available at https://github.com/hzwer/
ICCV2019-LearningToPaint.

1. Introduction
Painting, being an important form of visual art, sym-

bolizes human wisdom and creativity. In recent centuries,
artists have used a diverse array of tools to create their
masterpieces. But it’s hard for people to master this skill
without spending a large amount of time in proper training.
Therefore, teaching machines to paint is a challenging task
and helps to shed light on the mystery of painting. Fur-
thermore, the study of this topic can help us build painting
assistant tools.

We train an artificial intelligence painting agent that can
paint strokes on a canvas in sequence to generate a painting
that resembles a given image. Neural networks are used to
produce parameters that control the position, shape, color,
and transparency of strokes. Previous works have stud-
ied teaching machines to learn painting-related skills, such
as sketching [7, 3, 29], doodling [35] and writing charac-
ters [34]. In contrast, we aim to teach machines to handle
more complex tasks, such as painting portraits of humans
and natural scenes in the real world, which have rich tex-
tures and complex structural compositions.

We address three challenges for training an agent to paint
real-world images. First, painting like humans requires an
agent to have the ability to decompose a given target im-
age into an ordered sequence of strokes. The agent needs to

Figure 1: The painting process. The first column shows
the target images. Our agent tends to draw in a coarse-to-
fine manner.

parse the target image visually, understand the current sta-
tus of the canvas, and have foresightful plans about future
strokes. To achieve this planning, one method is to give the
supervised loss for stroke decomposition at each step, as
in [7]. However, such a method require ground truth stroke
decomposition, which is hard to define. Also, texture-rich
image painting usually requires hundreds of strokes to gen-
erate a painting that resembles a target image, which is tens
of times more than doodling, sketching or character writing
require and increases the difficulty of planning. To han-
dle the ill-definedness of the problem, and the long-term
planning challenge, we propose using reinforcement learn-
ing (RL) to train the agent, because RL can maximize the
cumulative rewards of a whole painting process rather than
minimizing supervised loss at each step. Experiments show
that an RL agent can build plans for stroke decomposition
with hundreds of steps. Moreover, we apply the adversar-
ial training strategy [5] to improve the pixel-level quality of
the generated images, as the strategy has proved effective in
other image generation tasks [17].

Second, we design continuous stroke parameter space,
including stroke location, color, and transparency, to im-
prove the painting quality. Previous works [7, 35, 4] de-
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(a) (b)

Figure 2: The overall architecture. (a) At the inference stage, the actor outputs a set of stroke parameters based on the
canvas status and target image at each step. The renderer then renders the stroke on the canvas accordingly. (b) At the
training stage, the actor is trained with assistants of an adversarial discriminator and a critic. The reward is given by the
discriminator at each step, and the training samples are randomly sampled from the replay buffer.

sign discrete stroke parameter spaces and each parameter
has only a limited number of choices, which fall short for
texture-rich paintings. Instead, we adopt the Deep Deter-
ministic Policy Gradient (DDPG) [19] which copes well
with the continuous action space of the agent.

Third, we build an efficient differentiable neural renderer
that can simulate painting of hundreds of strokes on the
canvas. Most previous works [7, 35, 4] paint by interact-
ing with undifferentiable painting simulation environments,
which are good as renders but fail to provide detailed feed-
back about the generated images. Instead, we train a neu-
ral network that directly maps stroke parameters to stroke
paintings. The renderer can also be adapted to different
stroke designs like triangle and circles by changing the gen-
eration patterns. Moreover, the differential renderer can be
combined with DDPG into a single model-based DRL that
can be trained in an end-to-end fashion, which significantly
boosts both the painting quality and convergence speed.

In summary, our contributions are three-fold:

• We approach the painting task with the model-based
DRL algorithm and build agents that decompose the
target image into hundreds of strokes in sequence
which can recreate a painting on canvas.

• We build differentiable neural renderers for efficient
painting and flexible support of different stroke de-
signs, e.g. Bézier curve, triangle, and circle. The neu-
ral renderer contributes to the painting quality by al-
lowing training model-based DRL agent in an end-to-
end fashion.

• Experiments show that the proposed painting agent can
handle multiple types of target images well, including
handwritten digits, streetview house numbers, human
portraits, and natural scene images.

2. Related work

Stroke-based rendering (SBR) is a method of non-
photorealistic imagery that recreates images by placing dis-
crete drawing elements such as paint strokes or stipples [12]
on canvas. Most SBR algorithms solve the stroke decom-
position problem by Greedy Search on every single step or
require user interaction. Haeberli et al. [9] propose a semi-
automatic method which requires the user to set parameters
to control the shape of the strokes and select the positions
for each stroke. Litwinowicz et al. [21] propose a single-
layer painter-like rendering which places the brush strokes
on a grid in the image plane, with randomly perturbed posi-
tions. Some work also studies the effects of using different
stroke designs [11] and the related problem of generating
animations from video [20].

Recent works use RL to improve the stroke decomposi-
tion of images. SPIRAL [4] is an adversarially trained DRL
agent that learn structures in images, but fails to recover the
details of human portraits. StrokeNet [34] combines dif-
ferentiable renderer and recurrent neural network (RNN) to
train agents to paint but fails to generalize on color images.
Doodle-SDQ [35] trains the agents to emulate human doo-
dling with DQN. Earlier, Sketch-RNN [7] uses sequential
datasets to achieve good results in sketch drawings. Artist
Agent [32] explores using RL for the automatic generation
of a single brush stroke.

3. Painting Agent

3.1. Overview

The goal of the painting agent is decomposing the given
target image into strokes that can recreate the image on the
canvas. To imitate the painting process of humans, the agent
is designed to predict the next stroke based on observing
the current state of the canvas and the target image. How-
ever, the stroke at each step needs to be well compatible
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(a) MNIST [16] (b) SVHN [24] (c) CelebA [23] (d) ImageNet [25]

Figure 3: The painting results on multiple datasets. The stroke numbers of the paintings are 5, 40, 200 and 400 for MNIST,
SVHN, CelebA and ImageNet respectively.

with previous strokes and future strokes to reduce the num-
ber of strokes for finishing the painting. We postulate that
the agent should maximize the cumulative rewards after fin-
ishing the given number of strokes, rather than the gain of
current stroke. To achieve this delayed-reward design, we
employ a DRL framework, with the diagrams for the overall
architecture shown in Figure 2.

In the framework, we model the painting process as a
sequential decision-making task, which is described in Sec-
tion 3.2. And to build the feedback mechanism, we use a
neural renderer to help generate detailed rewards for train-
ing the agent, which is described in Section 3.3.

3.2. The Model

Given a target image I and an empty canvas C0, the
agent aims to find a stroke sequence (a0, a1, ..., an−1),
where rendering at on Ct can get Ct+1. After rendering
these strokes in sequence, we get the final painting Cn,
which should be visually similar to I as much as possi-
ble. We model this task as a Markov Decision Process with
a state space S, an action space A, a transition function
trans(st, at) and a reward function r(st, at). The details of
these components are specified next.

State and Transition Function The state space is con-
structed by all possible information that the agent can ob-
serve in the environment. We separate a state into three
parts: states of the canvas, the target image, and the step
number. Formally, st = (Ct, I, t). Ct and I are bitmaps
and the step number t acts as additional information to in-

struct the agent the remaining number of steps. The tran-
sition function , st+1 = trans(st, at) gives the transition
process between states, which is implemented by painting a
stroke on the current canvas.

Action An action at of the painting agent is a set of pa-
rameters that control the position, shape, color and trans-
parency of the stroke that would be painted at step t. We
define the behavior of an agent as a policy function π that
maps states to deterministic actions, i.e. π : S → A. At
step t, the agent observes state st before predicting the pa-
rameters of the next stroke at. The state evolves based on
the transition function st+1 = trans(st, at), which runs for
n steps.

Reward Selecting a suitable metric to measure the dif-
ference between the current canvas and the target image is
found to be crucial for training a painting agent. The reward
is designed as follows,

r(st, at) = Lt − Lt+1 (1)

where r(st, at) is the reward at step t, Lt is the measured
loss between I and the Ct and Lt+1 is the measured loss
between I and the Ct+1. In this work, L is formulated as
the discriminator score that is defined in Section 3.3.3.

To make the final canvas resemble the target image, the
agent should be driven to maximize the cumulative rewards
in the whole episode. At each step, the objective of the agent
is to maximize the sum of discounted future reward Rt =∑T
i=t γ

(i−t)r(si, ai) with a discounting factor γ ∈ [0, 1].
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3.3. Learning

In this section, we introduce how to train the agent using
the model-based DDPG algorithm.

(a) Original DDPG (b) Model-based DDPG

Figure 4: In the original DDPG, critic needs to learn to
model the environment implicitly. In the model-based
DDPG, the environment is explicitly modeled through a
neural renderer, which helps to train an agent efficiently.

3.3.1 Model-based DDPG

We first describe the original DDPG, then introduce build-
ing model-based DDPG for efficient agent training.

As we use continuous parameters for strokes, the ac-
tion space in the painting task is continuous and of high
dimensions. Discretizing the action space to adapt some
DRL methods, such as DQN and PG, will lose the precision
of stroke representation and require many efforts in man-
ual structure design to cope with the explosion of parame-
ter combinations in discrete space. In contrast, DPG [28]
uses deterministic policy to resolve the difficulties caused
by high-dimensional continuous action space, and DDPG is
its variant using Neural Networks.

In the original DDPG, there are two networks: the ac-
tor π(s) and critic Q(s, a). The actor models a policy
π that maps a state st to action at. The critic estimates
the expected reward for the agent taking action at at state
st, which is trained using Bellman equation (2) as in Q-
learning [30] and the data is sampled from an experience
replay buffer:

Q(st, at) = r(st, at) + γQ(st+1, π(st+1)) (2)

.
Here r(st, at) is a reward given by the environment when

performing action at at state st. The actor π(st) is trained
to maximize the critic’s estimated Q(st, π(st)). In other
words, the actor decides a stroke for each state. Based on
the current canvas and the target image, the critic predicts
an expected reward for the stroke. The critic is optimized to
estimate more accurate expected rewards.

We cannot train a good-performance painting agent us-
ing original DDPG because it’s hard for the agent to model

the complex environment well that is composed of any types
of real-world images during learning. The World Model [8]
is a method to make agent understand the environments ef-
fectively. Similarly, we design a neural renderer so that the
agent can observe a modeled environment. Then it can ex-
plore the environment and improve its policy efficiently. We
term the DDPG with the actor that can get access to the
gradients from environments as model-based DDPG. The
difference between the two algorithms is visually shown in
Figure 4.

The optimization of the agent using the model-based
DDPG is different from that using the original DDPG. At
step t, the critic takes st+1 as input rather than both of st
and at. The critic still predicts the expected reward for the
state but no longer includes the reward caused by the cur-
rent action. The new expected reward is a value function
V (st) trained using discounted reward:

V (st) = r(st, at) + γV (st+1) (3)

Here r(st, at) is the reward when performing action at
based on st. The actor π(st) is trained to maximize
r(st, π(st)) + V (trans(st, π(st))). The transition function
st+1 = trans(st, at) is the differentiable renderer.

3.3.2 Action Bundle

Frame Skip [2] is a powerful trick for many RL tasks, by re-
stricting the agent to only observe the environment and acts
once every k frames rather than one frame. The trick makes
the agents have a better ability to learn associations between
more temporally distant states and actions. The agent pre-
dicts one action and reuse it at the next k−1 frames instead
and achieves better performance with less computation cost.

Inspired by this trick, we propose using Action Bundle
that the agent predicts k strokes at each step and the ren-
derer renders these strokes in order. This practice encour-
ages the exploration of the action space and action combi-
nations. The renderer can render k strokes simultaneously
to greatly speed up the painting process.

We experimentally find that setting k = 5 is a good
choice that significantly improves the performance and the
learning speed. It’s worth noting that we modify the reward
discount factor from γ to γk to keep consistency.

3.3.3 WGAN Reward

GAN has been widely used as a particular loss function in
transfer learning, text model and image restoration [18, 33],
because of its great ability in measuring the distribution
distance between the generated data and the target data.
Wasserstein GAN (WGAN) [1] is an improved version of
the original GAN that uses the Wasserstein-l distance, also
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known as Earth-Mover distance. The objective of the dis-
criminator in WGAN is defined as

max
D

Ey∼µ[D(y)]− Ex∼ν [D(x)] (4)

where D denotes the discriminator, ν and µ are the fake
samples and real samples distribution. The conditional
GAN training schema [14] is used, where fake samples are
pairs of a painting and its target; and real samples are two
same target images as shown in Figure 5. The prerequisite
of the above objective is that D should be under the con-
straints of 1-Lipschitz. To achieve the constraint, we use
WGAN with gradient penalty (WGAN-GP) [6].

Figure 5: Training of the Discriminator

We want to reduce the differences between paintings and
target images as much as possible. To achieve this, we set
the difference ofD scores from st to st+1 using equation (1)
as the reward for guiding the learning of the actor. In exper-
iments, we find rewards derived fromD scores is better than
L2 distance.

3.4. Network Architectures

(a) The actor and critic (b) The discriminator

(c) The neural renderer

Figure 6: Network architectures. FC refers to a fully-
connected layer, Conv refers to a convolution layer, and
GAP refers to a global average pooling layer. The actor and
the critic use the same structure except for the last FC layers
that have different output dimensions.

Due to the high variability and complexity of real-world
images, we use residual structures similar to ResNet-18 [10]
as the feature extractor in the actor and the critic. The ac-
tor works well with Batch Normalization (BN) [13], but
BN can not speed up the critic learning significantly. We
use WN [26] with Translated ReLU (TReLU) [31] on the

critic to stabilize our learning. In addition, we use Coord-
Conv [22] as the first layer in the actor and the critic. For
the discriminator, we use a network architecture similar to
PatchGAN [14], and with WN and TReLU. The network ar-
chitectures of the actor, critic and discriminator are shown
in Figure 6 (a) and (b).

Following the original DDPG paper, we use the soft tar-
get network which creates a copy for the actor and critic and
updating their parameters by having them slowly track the
learned networks. We also apply this trick on the discrimi-
nator to improve its training stability.

4. Stroked-based Renderer

In this section, we introduce how to build a neural stroke
renderer and use it to generate multiple types of strokes.

4.1. Neural Renderer

Using a neural network to generate strokes has two ad-
vantages. First, the neural renderer is flexible to generate
any styles of strokes and is more efficient on GPU’s than
most hand-crafted stroke simulators. Second, the neural
renderer is differentiable and enables end-to-end training
which boosts the performance of the agent.

Specifically, the neural renderer has as input a set of
stroke parameters at and outputs the rendered stroke im-
age S. The training samples are generated randomly us-
ing Computer Graphics rendering programs. The neural
renderer can be quickly trained with supervised learning
and runs on the GPU. The model-based transition dynam-
ics st+1 = trans(st, at) and the reward function r(st, at)
are differentiable. Some simple geometric trajectories like
circles have simple closed-form gradients. However, in gen-
eral, the discreteness of pixel position and pixel values re-
quires continuous approximation when deriving gradients,
e.g. for Bézier Curves. The approximations need to be care-
fully designed to not break the agent learning.

The neural renderer is a neural network consisting of
several fully connected layers and convolution layers. Sub-
pixel upsampling [27] is used to increase the resolution of
strokes in the network, which is a fast running operation
and can eliminate the checkerboard effect. We show the
network architecture of the neural renderer in Figure 6 (c).

4.2. Stroke Design

Strokes can be designed as a variety of curves or geome-
tries. In general, the parameter of a stroke should include
the position, shape, color, and transparency.

We design a stroke represent of quadratic Bézier curve
(QBC) with thickness to simulate the effects of brushes.
The shape of the Bézier curve is specified by the coordi-
nates of control points. Formally, the stroke is defined as
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(a) (b) (c) (d) (e) (f) (g)

Figure 7: CelebA paintings under different settings. (a) The paintings of SPIRAL with 20 strokes [4] (b) Ours with 20 opaque
strokes (c) Ours with 200 opaque strokes (d) Ours with 200 strokes and `2 reward (e) Ours with 200 strokes (Baseline) (f)
Ours with 1000 strokes (g) The target images

the following tuple:

at = (x0, y0, x1, y1, x2, y2, r0, t0, r1, t1, R,G,B)t, (5)

where (x0, y0, x1, y1, x2, y2) are the coordinates of the
three control points of the QBC. (r0, t0), (r1, t1) control
the thickness and transparency of the two endpoints of the
curve, respectively. (R,G,B) controls the color. The for-
mula of QBC is:

B(t) = (1− t)2P0 + 2(1− t)tP1 + t2P2, 0 ≤ t ≤ 1, (6)

As changing stroke representation only requires chang-
ing the final stroke rendering layer, we can use neural ren-
ders with the same network structure to implement the ren-
dering of different stroke designs.

5. Experiments
Four datasets are used for our experiments, including

MNIST [16], SVHN [24], CelebA [23] and ImageNet [25].
We show that the agent has excellent performance in paint-
ing various types of real-world images.

5.1. Datasets

MNIST contains 70,000 examples of hand-written digits,
where 60,000 are training data, and 10,000 are testing data.
Each example is a grayscale image of 28× 28 pixels.

SVHN is a real-world streetview house number image
dataset, including 600,000 digits images. Each sample in
the Cropped Digits set is a color image of 32 × 32 pixels.
We randomly sample 200,000 images for our experiments.

CelebA contains approximately 200,000 celebrity face
images. The officially provided center-cropped images are
used in our experiments.

ImageNet (ILSVRC2012) contains 1.2 million natural
scene images, which fall into 1000 categories. The extreme
diversity of ImageNet poses a grand challenge to the paint-
ing agent. We randomly sample 200,000 images that cover
1,000 categories as training data.

In our task, we aim to train an agent that can paint any
images rather than only the ones in the training set. Thus,
we additionally split out testing set to test the generalization
ability of the trained agent. For MNIST, we use the offi-
cially defined testing set. For other datasets, we randomly
split out 2,000 images as the testing set.

5.2. Training

We resized all images to the resolution of 128×128 pix-
els before feeding the agent. With an action bundle con-
taining 5 strokes, it takes about 2.1s to paint an image using
200 strokes on a 2.2GHz Intel Core i7 CPU. On an NVIDIA
2080Ti GPU, a 9.5× acceleration can be achieved. The
computation cost of the actor and renderer are about 554
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(a) DDPG and model-based DDPG (b) Different settings of Action Bundle (c) Different number of strokes

Figure 8: The testing `2-distance between paintings and the target images of CelebA for ablation studies.

MFLOPs and 217 MFLOPs respectively for painting an ac-
tion bundle.

We trained the agent with 2 × 105 mini-batches for Im-
ageNet and CelebA datasets, 105 mini-batches for SVHN
and 2× 104 mini-batches for MNIST. Adam [15] was used
for optimization, and the minibatch size was set as 96. The
agent training was performed on a single GPU. It took about
40 hours for training on ImageNet and CelebA, 20 hours for
SVHN and two hours for MNIST. It took 5 to 15 hours to
train the neural renderer for every stroke design. The same
trained renderer can be used for different agents.

At each iteration, we update the critic, actor, and dis-
criminator in turn. All models are trained from scratch. The
replay memory buffer was set to store the data of the lat-
est 800 episodes for training the agent. Please refer to the
supplemental materials for more training details.

5.3. Results

Figure 9: The testing `2-distance between the paintings and
the target images for different datasets.

The images of MNIST and SVHN show simple image
structures and regular contents. We train one agent that
paints five strokes for images of MNIST, and another one
that paints 40 strokes for images of SVHN. The example
paintings are shown in Figure 3 (a) and (b). The agents can
perfectly reproduce the target images.

In contrast, the images of CelebA have more complex
structures and diverse contents. We train a 200-strokes

agent to deal with the images of CelebA. As shown in Fig-
ure 3 (c), the paintings are quite similar to the target images
although losing a certain level of details.

We train a 400-strokes agent to deal with the images of
ImageNet, due to the extremely complex structures and di-
verse contents. As shown in Figure 3 (d), paintings are sim-
ilar to the target images concerning the outline and colors of
objects and backgrounds. Despite the loss of some textures,
the agent still shows great power in decomposing compli-
cated scenes into strokes and can reasonably repaint them.

We show the test loss curves of agents trained on differ-
ent datasets in Figure 9.

In [4] SPIRAL shows its performance on CelebA. To
make a fair comparison, we also train a 20-strokes agent
as SPIRAL and use opaque strokes. The results of the two
methods are shown in Figure 7 (a) and (b) respectively. Our
`2 distance is 3x smaller than that of SPIRAL. We analyze
the main differences between SPIRAL and our methods as
follows. First, SPIRAL uses an undifferentiable painting
simulator and have to use model-free RL algorithms, which
usually perform worse than the model-based ones. Second,
SPIRAL predicts an action by recurrently producing each
dimension with strong nonlinearities. Our method simpli-
fies this step by predicting multiple action vectors in just
one step. Third, we believe having a sufficient number of
strokes is critical for vivid results. SPIRAL only gets a re-
ward after finishing a whole episode. This makes the re-
wards too sparse as the number of steps increases.

5.4. Ablation Studies

In this section, we study how the components or tricks
affect the performance of the agent. The control experi-
ments are performed on CelebA.

5.4.1 Model-based vs. Model-free DDPG

We explore how much benefits are brought by model-based
DDPG over original DDPG. Original DDPG can only es-
sentially model the environment with observations and re-
wards from the environment. Besides, the high-dimensional

7



action space also stops model-free methods from success-
fully dealing with the painting task. To further explore
the capability of model-free methods, we improve origi-
nal DDPG with a method inspired by PatchGAN. We split
the images into patches before feeding the critic, then use
the patch-level rewards to optimize the critic. We term this
method as PatchQ. PatchQ boosts the sample efficiency and
improves the performance of the agent by providing much
more supervision signals in training.

We show the performance of agents trained with dif-
ferent algorithms in Figure 8 (a). Model-based DDPG
achieves the best performance, with 5× smaller `2 dis-
tance than DDPG with PatchQ, and 20× smaller `2 dis-
tance than the original DDPG. Although underperforming
the model-based DDPG, DDPG with PatchQ outperforms
original DDPG with significant margins.

5.4.2 Rewards

`2 distance is an alternative to the reward for training the ac-
tor. We show the painting results of using WGAN rewards
(Section 3.3.3) and `2 rewards in Figure 7 (d) and (e) re-
spectively. The paintings with WGAN rewards show richer
textures and look more vivid. Interestingly, we find using
WGAN rewards to train the agent can achieve a lower `2
loss on the testing data than using `2 rewards directly. This
shows that WGAN distance is a better metric in measur-
ing the differences between paintings and real-world images
than `2 distance.

5.4.3 Stroke Number and Action Bundle

The stroke number for painting is critical for the final paint-
ing quality, especially for texture-rich images. We train
agents that can paint 100, 200, 400 and 1000 strokes, and
the testing loss curves are shown in Figure 8 (c). It’s ob-
served that larger stroke numbers contribute to better paint-
ing quality. We show the paintings with 200-strokes and
1000-strokes in Figure 8 (e) and (f) respectively. To the
best of our knowledge, few methods can handle such a large
number of strokes. More strokes help reconstruct the details
in the paintings.

We show test loss curves of several settings of Action
Bundle in Figure 8 (b). We find that making the agent
predict five strokes in one bundle achieves the best perfor-
mance. We conjecture that increasing strokes number in one
bundle helps the agent to build long-term plans as there will
be fewer rounds of decision, even though it will increase the
difficulty in a single round of decision. Thus, to achieve a
trade-off, a few strokes in one bundle is a good setting for
the agent. Experiments determine that setting five actions in
an Action Bundle is optimal in our setting for the painting
task.

5.4.4 Alternative Stroke Representations

Besides the QBC, we find alternative stroke representations
can also be well mastered by the agent, including straight
strokes, circles, and triangles. We train one neural renderer
for each stroke representation. The paintings with these ren-
derers are shown in Figure 10. The QBC strokes produce
excellent visual effects. Meanwhile, other stroke designs
create different artistic effects. Although with different
styles, the paintings still resemble the target images. This
shows that our network architecture generalizes to other
choices of stroke designs.

Also, by restricting the transparency of strokes, we can
get paintings with different stroke effects, such as ink paint-
ing and oil painting as shown in Figure 7 (c).

The target QBC Straight
Stroke

Triangle Circle

Figure 10: CelebA paintings using different stroke designs.

6. Conclusion
In this paper, we train agents that decompose the target

image into an ordered sequence of strokes in a fashion mim-
icking human painting processes on canvases. The training
is based on the Deep Reinforcement Learning framework,
which encourages the agent to make long-term plans for
sequential stroke-based painting. In addition, we build a
differentiable neural renderer to render the strokes, which
allows using model-based DRL algorithms to further im-
prove the quality of recreated images. The learned agent can
predict hundreds or even thousands of strokes to generate
a vivid painting. Experimental results show that our model
can handle multiple types of target images and achieve good
performance in painting real-world images like human por-
traits and texture-rich natural scenes.
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7. Appendix
7.1. Architecture

The network structure diagrams are shown in Fig-
ure 11, 12, 13 and 14 , where FC refers to a fully-connected
layer, Conv is a convolution layer. The hyperparameters
used in training are listed as much as possible in Table 1
and 2. All ReLU activations between the layers have been
omitted for brevity.

Table 1: Hyper-parameters for the DDPG.

# Action per step 5
# Step per episode 40
Replay buffer size 800 episodes
# Training batches 2e5

Batch size 96
Actor learning rate {3e− 4, 1e− 4}
Critic learning rate {1e− 3, 3e− 4}

* Learning rate decays after
1e5 training batches

Reward discount factor 0.955

Optimizer Adam
Actor Normalization BN
Critic Normalization WN with TReLU

Table 2: Hyper-parameters of the discriminator training.

Replay buffer size 800 episodes
# Training batches 2e5

Batch size 96
Learning rate 1e− 4

Optimizer Adam (β1 = 0.5, β2 = 0.999)
Normalization WN with TReLU

[img, img]
[128,128,6]

5x5Conv + WN + TReLU
[8, 8, 128]

4×

5x5Conv + WN + TReLU
[4, 4, 1]

GAP
[1]

Figure 11: The network architecture of the discriminator.
GAP refers to a global average pooling layer. Input contains
two images.

[Parameters]
[13]

FC
[512]

FC
[1024]

FC
[2048]

3x3Conv + 3x3Conv + Sub-pixel
[128, 128, 1]

Sigmoid + Reshape
[128, 128]

3×

Figure 12: The network architecture of the neural ren-
derer.

[C, I,#Step]
[128,128,7]

3x3 CoordConv
[64, 64, 64]

ResNet18 + BN
[512]

FC + sigmoid
[5 * 13]

Figure 13: The network architecture of the actor. Input
contains the canvas, target image and step number.

[C, I,#Step]
[128,128,7]

3x3 CoordConv
[64, 64, 64]

ResNet18 + WN + TReLU
[512]

FC
[1]

Figure 14: The network architecture of the critic. Input
contains the canvas, target image and step number.
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