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Abstract. Holistic person re-identification (ReID) has received exten-
sive study in the past few years and achieves impressive progress. How-
ever, persons are often occluded by obstacles or other persons in practi-
cal scenarios, which makes partial person re-identification non-trivial. In
this paper, we propose a spatial-channel parallelism network (SCPNet) in
which each channel in the ReID feature pays attention to a given spatial
part of the body. The spatial-channel corresponding relationship super-
vises the network to learn discriminative feature for both holistic and
partial person re-identification. The single model trained on four holistic
ReID datasets achieves competitive accuracy on these four datasets, as
well as outperforms the state-of-the-art methods on two partial ReID
datasets without training.

Keywords: Person Re-identification · Deep Learning · Spatial-channel
Parallelism.

1 Introduction

Person re-identification (ReID) is a popular research problem in computer vision.
However, existing works always focus on the holistic person images, which cover
a full glance of one person. There are some holistic person images shown in
Fig. 1(c). In the realistic scenario, the person may be occluded by some moving
or static obstacles (e.g. cars, walls, other persons), as shown as in Fig. 1(a)
and Fig. 1(b). Therefore, partial person ReID is an important issue for real-
world ReID applications and has gradually attracted researchers’ attention. The
occlusions will change the feature of person appearance, which presents a big
challenge to identify a person across views. There are few studies focusing on
partial person ReID, while most current holistic person based approaches can
not well solve the partial person images. From this perspective, studying partial
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(a) Partial-iLIDS (b) Partial REID (c) DukeMTMC-reID

Fig. 1. Samples of holistic person and partial person images.

person ReID, especially jointing holistic person ReID, is necessary and crucial
both for academic research and practical ReID applications.

Most of current ReID studies use representation learning [18,39] or metric
learning [6,4,14,20,29] to learn a global feature, which is sensitive to the occlu-
sions changing the person appearance. Some works, which use part or pose guided
alignment [25,32,36,28,35,37]to learn local features, can boost the performance
of holistic person ReID, but may fail to get good alignment information when the
person images are non-holistic. To overcome the above problems, several partial
ReID methods have been proposed in recent years. Sliding Window Matching
(SWM) [41] introduces an alternative solution for partial ReID by setting up a
sliding window of the same size as the probe image and using it to search for
the most similar region within each gallery person. However, for SWM, the size
of probe person is smaller than the size of the gallery person. Some part-to-part
matching (PPM) based methods divide the image into many parts of the same
size and use local part-level features to solve partial ReID. The searching process
of SWM and PPM based methods is time-consuming. Hence [13] proposed Deep
Spatial feature Reconstruction (DSR), which exploits the reconstruction error
of two images of different sizes to leverage Fully Convolution Network (FCN).
Replacing part-based searching with direct reconstruction, DSR accelerates the
process of ReID. However, DSR needs partial ReID data to train a good partial
ReID model.

In this paper, we propose an end-to-end model named spatial-channel par-
allelism network (SCPNet), which is only trained on holistic ReID datasets but
performs well on both holistic and partial person ReID datasets. In the proposed
framework, SCPNet includes a global branch and a local branch. As same as most
of traditional methods, the global branch uses the global average pooling (GAP)
to extract the global feature. To acquire the local feature, we divide feature maps
into several equal parts from top to down and then apply the horizontal pooling
to get local features of each part. Inspired by the motivation that we expect the
global feature can store certain local information, we design a loss to leverage
global branch through the local feature, which is the output of the local branch.
Due to this design, SCPNet can learn how to do partial ReID and keep working
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in holistic person ReID at the same time without partial ReID training data.
In previous research works, combing the global feature with the local feature
is a common solution to boost the performance. However, the dimension of the
feature vector determines the speed of retrieval process. SCPNet can only use
the output features of the global branch to halve the dimension and speed up
retrieval, because the features contain the local information. In the following, we
overview the main contents of our method and summarize the contributions:

– We propose a novel approach named Spatial-Channel Parallelism Network
(SCPNet) for both holistic and partial person ReID, which effectively use
the local features to leverage the global features in the training phase.

– Besides, our SCPNet can perform better on partial ReID with only being
trained on holistic ReID datasets, which let it more suitable for the practical
ReID scene.

– Experimental results demonstrate that the proposed model achieves state-
of-the-art results on four holistic ReID datasets. And our unsupervised cross-
domain results of partial ReID beat the supervised state-of-the-art results
by a large margin on Partial REID [41] and Partial-iLIDS [40] datasets.

2 Related Works

Since the proposed approach joints holistic and partial person ReID using deep
convolutional networks, we briefly introduce some related deep learning based
works in this section.

Representation learning. Deep representation learning which regards ReID
as a classification task such as verification or identification problem, is a com-
monly supervised learning method in person ReID [18,39,8]. In [39], Zheng et al.
make the comparison between verification baseline and identification baseline:
1) For the former, a pair of input person images is judged whether they belong
to the same person by a deep model. 2) For the latter, the method treats each
identity as a category, and then minimizes the softmax loss. In some improved
works [18], person attributes loss is combined with verification or identification
loss to learn a better feature description.

Metric learning. In deep metric learning, the deep model can directly learn
the similarity of two images according to the L2 distance of their feature vectors
in the embedding space. The typical metric loss includes contrastive loss, triplet
loss and quadruplet loss in terms of the training pairs. Usually, two images of
the same person are defined as a positive pair, whereas two images of different
persons are a negative pair. Contrastive loss minimizes the features distance of
the positive pairs while maximizing the features distance of the negative pairs.
However, triplet loss [20] is motivated by the margin enforced between positive
and negative pairs. A triplet only has two identities, and quadruplet adds an ex-
tra identity to get a new negative pair. In addition, selecting suitable samples for
the training model through hard mining has been shown to be effective [14,29].
Combining softmax loss with metric learning loss to speed up the convergence
is also a popular method [10].
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Part-based methods. Part-based methods are commonly used to extract
local features in holistic person ReID. This kind of methods has very great in-
spiration for occlusion problem in partial person ReID. In details, human pose
estimation and landmark detection having achieved impressive progress, sev-
eral recent works in ReID employ these tools to acquire aligned subregion of
person images [28,35,37,34]. Then, using a deep model extract the spatial lo-
cal features of each part is an effective way to boost the performance of global
features. Another common solution is to divide images into several parts with-
out an alignment [25,32,36] and concatenate the features of each part. However,
when occlusion happened, the above methods are usually inefficient because of
the incomplete pose points or disturbed local features. In addition, they usually
concatenate the global and local features to avoid losing the global information,
which means they need extra extracted global features. The SCPNet is inspired
by using the local features to leverage the global features, and is suitable for
both holistic and partial person ReID.

Partial Person ReID. Solving the occlusion problem in person ReID is
important for the ReID applications. However, there have been few methods
which consider how to learn a better feature to match an arbitrary patch of a
person image. In some other tasks, some works [7,11] easily wrap an arbitrary
patch of an image to a fixed-size image, and then extract the fixed-length fea-
ture vector for matching. In [41], Zheng et at. improved it into a global-to-local
matching model named Sliding Window Matching (SWM) that can capture the
spatial layout information of local patches, and also introduced a local patch-level
matching model called Ambiguity-sensitive Matching Classifier (AMC) that was
based on a sparse representation classification formulation with explicit patch
ambiguity modeling. However, the computation cost of AMC-SWM is expensive
because it extracts feature using much time without sharing computation. He et
at. proposed a method [13] that leveraged Fully convolutional Network (FCN)
to generated certain-sized spatial feature maps such that pixel-level features are
consistent. Then, it used Deep Spatial feature Reconstruction (DSR) to match
a pair of person images of different sizes. DSR need to solve an optimization
problem to calculate the similarity of two feature maps of different size, which
increases the time consumption in application. To this end, we propose a model
called SCPNet which can output a fixed-length feature vector to solve both
holistic and partial ReID.

3 Our Proposed Approach

In this section, we present our spatial-channel parallelism network (SCPNet) as
in Fig. 2.

In SCPNet, a single global feature is generated for the input image, and
the L2 distance of such features are used as similarity in the inference stage.
However, the global feature is learned jointly with local features in the learning
stage.
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Fig. 2. Structure of our SCPNet model. We feed input images forward into the ResNet-
50[12] backbone network and extract output C ×H ×W feature map s of last convo-
lutional layer. Then we divide a feature map into four spatial horizontal stripes and
apply global average pooling (GAP) for each stripe producing local features. We also
apply an 1×1 convolutional layer on the feature map to produce multi-channel spatial
feature representation, and then we use GAP to obtain the compact feature. The com-
pact feature is split into four feature vector parts by the channel. Finally, three losses
are computed.

For each image, we use a CNN, such as ResNet50 [12], to extract a feature
map as the original appearance representation, which is the output of the last
convolution layer (C ×H ×W , where C is the channel number and H ×W is
the spatial size. On the other hand, an 1 × 1 convolutional layer is applied to
the feature map to extend the channel number from C to RC, where R is the
number of body region (R = 4 in Fig. 2), then a global pooling is applied to
extract the global feature (a RC-d vector). On the other hand, the feature map
is uniformly divided into R parts in vertical direction, and a global pooling is
applied for each of them to extract R local features (C-d vectors).

Intuitively, the global feature represents the whole person, while R local
features represent different body regions. However, both of these features have
drawbacks if trained independently. For the global feature, it often focuses on cer-
tain part and ignores other local details. For the local features, as demonstrated
in [21], an effective receptive field only occupies a fraction of the full theoretical
receptive field and a lot of local information is still preserved after many con-
volution layers. Since their effective receptive fields are small, they lack enough
context information to well represent the corresponding body region. Moreover,
because of misalignment, such as pose variation and inaccurate detection boxes,
a local feature may not correspond to the body regions accurately.

To alleviate the drawbacks, we propose a spatial-channel parallelism method.
After obtaining the global feature and local features, each local feature is mapped
to a part of the global feature (with the same color as in Fig. 2). In more details,
the r-th local feature, which is a C-dimensional vector, should be closer to the
continuously C channels from the rC-th to the (r+1)C-th in the global feature.
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We use the local features to let each part of the global feature focus on certain
body regions by introducing a spatial-channel parallelism loss as follows:

LSCP =

R∑
r=1

‖fs,r − fc,r‖22 (1)

where fs,r is the r-th local feature, and fc,r is the r-th part of the global feature
(the rC-th to the (r + 1)C-th channel).

Horizontal
GAP

GAP

feature loss

W
C

H

H

W
C

Fig. 3. The example of spatial-channel parallelism. The feature map of the global
branch is produced from the entire original feature map of the local branch. Each
channel part of the global branch has global receptive filed (blue region) and contains
global information of the whole input image, while the first part of the local branch
maps to the orange region in the image.

The two types of features should be close, because it is actually a re-learning
process which enforces every channel part to learn the corresponding local spatial
feature, but from the entire feature map, see Fig. 4(b). The misalignment can be
handled because the corresponding part is extracted automatically from whole
input even when the relevant part appears in other position of the input image.
Thus the resulting re-learned feature is a more robust representation.

In this way, with the supervision of local features, each part of the global
feature is forced to learn local representation of the corresponding part of the
input. Hence each region of the body is focused by certain channels in the global
feature, which makes the global feature hold more local details and more discrim-
inative. Moreover, different from local features, each part of the global feature
has a global receptive field, which leads to better representation of the corre-
sponding local region. It also has no rigid spatial segmentation, thus the global
feature is more robust to pose variation and inaccurate bounding boxes.

In the learning stage, the loss is comprised of three losses: the metric learning
loss Lmetric, the classification loss Lclass and the spatial-channel parallelism loss
LSCP . For the metric learning loss, the similarity between two images is defined
by the L2 distance of their global features, and the TriHard loss proposed by
[14] is chosen, where for each sample, the most dissimilar one with the same
identity and the most similar one with a different identity is chosen to obtain a



SCPNet 7

triplet. For the classification loss, a softmax is applied for each image with the
identity. The spatial-channel parallelism loss is given in Eq. (1), which requires
local features to compute. And the final loss is the sum of above three loss as
following:

L = Lclass + Lmetric + λLSCP (2)

where λ is the weight of spatial-channel parallelism loss.
In the inference stage, only the global feature is needed. For a holistic person,

its ReID feature is represented by the whole global feature, while for a partial
person, its ReID feature is represented by part of the global feature. Hence, the
similarity of two person images is computed as the L2 distance of the shared
part of their global features. For both holistic and partial ReID, we use the same
feature vector and let SCPNet to learn to determine which part of feature should
be extracted automatically.

4 Experiments

4.1 Datasets

We train a single model end-to-end on four challenging holistic ReID datasets, in-
cluding Market-1501[38], DukeMTMC-reID[22], CUHK03[15] amd CUHK-SYSU[30],
and then test on these four datasets. Furthermore, we also directly test the
trained model on two partial ReID datasets including Partial REID[41] and
Partial-iLIDS[40] without training.

Market-1501 consists of 32,668 bounding box images from 1,501 person
identities captured by six cameras in front of a supermarket.The provided pedes-
trian bounding boxes are detected by Deformable Part Model (DPM)[9]. The
training set consists of 12,936 images from 751 identities and testing set contains
the other 19,732 images from 750 identities.

DukeMTMC-reID consists of 36,411 images from 1,812 person identities
captured by 8 high-resolution cameras. There are 1,404 identities appear in more
than two cameras and the other 408 identities are regarded as distractors. Train-
ing set consists of 702 identities and testing set contains the rest 702 identities.

CUHK03 consists of 14,096 images from 1,467 person identities captured by
six cameras in the CUHK campus. Both manually labeled pedestrian bounding
boxes and automatically detected bounding boxes are provided. In this paper,
we use the manually labeled version.

CUHK-SYSU contains 18,184 full images and 99,809 bounding boxes from
8,432 person identities are provided. The dataset is divided into training set
containing 11,206 images of 5,532 identities and testing set containing the other
6,978 images of 2,900 identities.

Partial REID contains 600 images of 60 people, with 5 full-body images and
5 partial images per person. The images were collected at an university campus
with different viewpoints, background and different types of severe occlusions.
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Partial-iLIDS is a simulated partial person datasets based on i-LIDS[40].
There are 119 people with total 476 person images captured by multiple non-
overlapping cameras. Some images occlusion, sometimes rather severe, caused
by people and luggage.

4.2 Implementation Detials

We implement our propose SCPNet model using the PyTorch framework. The
backbone network is the ResNet-50[12] model pre-trained on ImageNet. In train-
ing phase, the input image is resized to 288 × 144 then randomly cropped to
256× 128 with random horizontal flip. The mini-batch size is set to 64, in which
each identity has 4 images. Before feeding the input image into the network, we
subtract the mean value and then divide it by the standard deviation as same
as the normalization procedure of the ResNet-50[12] trained on ImageNet.

We use the Adam optimizer with the default hyper-parameters (ε = 10−8,
β1 = 0.9, β2 = 0.999) to minimize the network loss. The initial learning rate
is 10−3, and we lower the learning rate twice at epoch 80 and 180 to 10−4 and
10−5 respectively. The total training takes 300 epochs. Weight decay is set to
10−5 and never changes. We also add a dropout layer for classification and the
dropout ratio is set to 0.75 in all our experiments.

We will release the code and trained weights of our SCPNet model after
publication and more details can be found in the code.

4.3 Results

In this section, we focus on five aspects: 1) The Ablation study on spatial-channel
parallelism. 2) The influence of number of parts. 3) The influence of SCP loss
weight. 4) State-of-the-arts results of holistic ReID. 5) State-of-the-arts results
of partial ReID.

For partial ReID datasets, similar to Market-1501[38], we provide top-k ac-
curacy by finding the most similar correct match in the top k candidates.

Ablation Study. To evaluate the benefits of the proposed SCPNet, we compare
it with a baseline network. The baseline network is the same as SCPNet, but
without the SCP loss in the learning stage. For the baseline network, there are
three features can be extracted as the ReID feature in the experiments: 1) the
global feature, which is the output of the global branch, 2) the local feature,
which is the concatenation of all features in the local branch, 3) and the concat
feature, which is the concatenation of the previous two features. For SCPNet,
we set R = 4 and λ = 10 in the experiments.

As Table. 1 shown, we report the rank-1 accuracy of four experiments on
totally six ReID datasets mentioned. For the baseline network, we report the
results when the global/local/concatenate feature is used as the ReID features.
It is easy to see that the concatenate feature is superior to both the global
and the local feature in the baseline network. However, the SCPNet always
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outperforms the baseline network with the concat feature on the ReID datasets.
It is shown that let the global feature and the local feature learn each other by
spatial-channel parallelism is better than simply concatenating them. Moreover,
the channel number used as ReID feature in SCPNet is only half of that in the
baseline using the concat feature.

Table 1. Influence of different features. When SCP loss is not used, we apply softmax
and triplet loss on spatial feature branch, channel feature branch or both branches
respectively. When SCP loss is used, we use structure shown in Fig. 2 and extract
different output as final representation.

Settings Results (r=1), R = 4, λ = 10

Model Branch Market-1501 DukeMTMC-reID CUHK03 CUHK-SYSU Partial ReID Partial-iLIDs

Local 90.7 77.5 90.3 94.5 61.0 83.2

Baseline Global 92.0 80.2 89.6 93.1 60.0 78.2

Concate 92.8 81.7 92.7 93.6 61.0 84.9

SCPNet 94.1 84.8 93.3 94.6 68.3 84.9

On the partial ReID task, the local branch performs better than the global
branch on Partial REID and Partial-iLIDS datasets, which indicates that lo-
cal features are more important for partial ReID. And our SCPNet exceeds the
global branch of Baseline by more than 6.0% rank-1 accuracy (1.3% ∼ 4.6%
rank-1 accuracy for holistic ReID). It can be learned that our proposed SCPNet
improves much more performance in partial ReID than holistic ReID. In addi-
tion, the SCPNet is not inferior to the concatenate branch, which includes local
and global features. In other words, the local information is transferred from
the local branch to the global branch. The results of ablation study show the
effectiveness of our proposed approach.

Influence of number of parts. Because the size of the output feature map
of the SCPNet is 8 × 4 in our experiments, we can divide the feature map into
1, 2, 4, 8 parts respectively. As shown as Table. 2, when R = 1, two branches
are both global branches and the SCPNet achieves worst performance on all six
datasets. When we set R > 1, the SCPNets perform better than the SCPNet
(R = 1) on all datasets, which shows that the local features are beneficial to
ReID.

SCPNet with few strips will become a common global feature model, which
cannot fully utilize the spatial-channel parallelism with more local feature. SCP-
Net with more strips cannot preserve semantic information of person compo-
nents, which influences the performance. e.g., Fig. 4(a)(R=8), more strips would
divide the head and bag into two parts. The experimental result suggests that
SCPNet with 4 strips can make full use of local information, and preserve more
semantic information. Fig. 4(a) illustrates the different strip horizontal division.

We choose R=4 to do the subsequent experiments in this paper.
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Table 2. Influence of different number of parts (rank-1 accuracies, λ = 1).

R Market-1501 DukeMTMC-reID CUHK03 CUHK-SYSU Partial ReID Partial-iLIDS

1 92.0 80.8 89.9 93.8 61.3 82.4

2 93.3 82.9 90.9 94.2 65.3 85.7

4 93.4 82.0 90.3 93.9 67.0 84.9

8 93.2 82.6 90.9 94.1 65.0 84.0

Input image R=1 R=4 R=8R=2

Input image Part 1 Part 2 Part 4Part 3

(a) Different number
of parts

(b) Visualization of activation of
channel divisions (R=4)

High

Low

Fig. 4. Strip horizontal division. SCPNet with few strips cannot use local information
well. SCPNet with more strips cannot preserve the semantic information well (e.g.,
a ”half head” when R = 8). (b) Spatial-channel parallelism. For every position, we
calculate the maximum of all channels belong to this part of the global feature. It
shows that each part focuses mainly on the corresponding spatial part.

Influence of SCP loss weight. We fix R = 4 and use different weights (λ)
of SCP loss to do the experiments. As shown as Table. 3, when λ = 0, the
model (Baseline mentioned previously) gets the lowest rank-1 accuracy on all
datasets. In overall, the performance of the SCPNet is gradually improving when
λ increases from 0.5 to 10, which demonstrates the effectiveness of the spatial-
channel parallelism again. If we continue to increase λ, the SCPNet will not
improve performance again on five datasets except Partial-iLIDS. When R = 4
and λ is around 10, the proposed SCPNet achieves the best performance.

Comparison with single-dataset setting. Unlike many existing methods,
we train a single model on all four datasets. For a fair comparison, without any
extra modification or hyperparameter searching, we also train our SCPNet on
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Table 3. Influence of SCP loss weight (rank-1 accuracies, R = 4).

λ Market-1501 DukeMTMC-reID CUHK03 CUHK-SYSU Partial ReID Partial-iLIDS

0 92.0 80.2 89.6 93.1 60.0 78.2

0.5 93.2 81.7 90.0 94.0 63.3 83.2

1 93.4 82.0 90.3 93.9 67.0 84.9

2 93.6 82.6 91.2 94.2 65.3 84.9

4 93.8 83.6 92.2 94.4 66.0 84.0

6 94.1 83.9 92.3 94.3 64.7 84.9

8 93.8 83.8 92.4 94.3 68.0 84.0

10 94.1 84.8 93.3 94.6 68.3 84.9

12 93.9 83.3 92.2 94.6 64.0 86.6

16 93.5 83.6 92.5 94.6 67.3 82.3

0
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4
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6

7

8

9

0 0.5 1 2 4 6 8 10 12 16
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EM
EN

T

FEATURE WEIGHT ƛ

Market-1501 DukeMTMC-reID CUHK03 CUHK-SYSU Partial ReID Partial-iLIDS

Fig. 5. The increments of rank-1 accuracy on six datasets. We use the results of SCPNet
(λ = 0) as the baseline and compute the increment of SCPNet results with different λ.

each dataset alone using exactly the same setting. As shown in Table 4, SCPNet-s
is inferior to SCPNet-a, but it still outperforms the baseline by a large margin.

With adjustments especially for single-dataset setting, our SCPNet-s can
acquire even better performance. For example, SCPNet-s can achieve 91.7% by
changing mini-batch size from 64 to 48 on Market-1501.

The proposed SCP loss can enforce the model to learn more discrimina-
tive features. When some region is occluded, feature in other regions is still
available. As shown in Table 5, when trained on CUHK-SYSU then tested on
Market-1501 and DukeMTMC-reID, SCPNet outperforms baseline significantly
(only 1.2% gap on CHUK-SYSU, but 12.1% and 15.0% gap on Market-1501 and
DukeMTMC-reID respectively), which implies it has learned to extract richer
feature and is more robust to occlusions and appearance variation. Furthermore,
SCPNet can focus on human body rather than occlusions. As shown in Fig. 6,
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Table 4. Comparison of single model and dataset-specific model. We just report rank-
1 accuracies. A method with “-s” means that the model is trained with corresponding
single dataset, while “-a” means the model is trained with all four datasets. Baseline
is the global branch without SCP loss.

Method Market-1501 DukeMTMC-reID CUHK03 CUHK-SYSU

Baseline-s 88.1 77.6 89.5 90.7

SCPNet-s 91.2 80.3 90.7 91.9

SCPNet-a 94.1 84.8 93.3 94.6

when the upper or bottom part is occluded, the activation of distractor parts is
suppressed, which makes SCPNet suitable for partial ReID task. Misalignment
is also handled because we extract each part of feature from whole regions rather
than rigid local pooling regions. SCP loss cannot well deal with the occlusion in
the vertical direction. We admit that this is a disadvantage, and may introduce
vertical stripes into SCP loss in the future.

Fig. 6. Occlusion visualization of activa-
tion of channel divisions (R=4)

Table 5. Trained on CUHK-SYSU then
tested on Market-1501 and DukeMTMC-
reID directly.

Method Market-1501 DukeMTMC-reID

Baseline-s 56.0 26.6
SCPNet-s 68.1 41.6

Results on Holistic ReID. We compare our SCPNet to existing state-of-
the-art methods on four holistic datasets, including Market-1501, CUHK03,
DukeMTMC-ReID, and CUHK-SYSU. Because these four datasets are not over-
lapping, we train only one single model with all training samples. For Market-
1501, CUHK03, DukeMTMC-ReID, and CUHK-SYSU, we mainly report the
mAP and CMC accuracy as same as the standard evaluation. For CUHK03,
because we train one single model for all benchmarks, it is slightly different
from the standard procedure in [15], which splits the dataset randomly 20 times,
and the gallery for testing has 100 identities each time. We only randomly split
the dataset once for training and testing. In addition, we mainly report CMC
accuracy and did not consider mAP because of the different gallery size.

The results are shown in Table. 6 ∼ 9. For the SCPNet, we choose the
results of the experiment with λ = 10 and R = 4. Overall, our proposed SCPNet
achieves the best performance on Market-1501, CUHK-SYSU and CUHK03,
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Table 6. Experimental results on the
Market-1501 with single query

method mAP r = 1 r = 5

LDNS [33] 35.7 61.0 -
Gated S-CNN[26] 39.6 65.9 -

IDNet+VeriNet [5] 45.5 71.8 -
Re-ranking [43] 63.6 77.1 -

PIE [37] 56.0 79.3 94.4
XQDA+SSM [2] 68.8 82.2 -

TriHard [14] 69.1 84.9 -
Spindle[35] - 76.9 91.5

CamStyle[44] 68.7 88.7 -
GLAD[28] 73.9 89.9 -

HA-CNN[16] 75.5 91.2 -

DSR[13] 64.3 83.6 -

SCPNet-s 75.2 91.2 97.0
SCPNet-a 81.8 94.1 97.7

Table 7. Experimental results on the
CUHK03 with detected dataset

Methods r = 1 r = 5 r = 10

LOMO+XQDA [17] 44.6 - -
LDNS [33] 62.6 90.0 94.8

Gated S-CNN[26] 61.8 - -
LSTM Simaese [27] 57.3 80.1 88.3

Re-ranking [43] 64.0 - -
PIE [37] 67.1 92.2 96.6

TriHard [14] 75.5 95.2 99.2
OIM [31] 77.5 - -
Deep [10] 84.1 - -

SOMAnet [3] 72.4 95.2 95.8
IDNet+VeriNet [42] 83.4 97.1 98.7

GLAD[28] 85.0 97.9 99.1
Spindle[35] 88.5 97.8 98.6

SCPNet-s 90.7 98.0 99.0
SCPNet-a 93.3 98.7 99.2

Table 8. Experimental results on the
DukeMTMC-reID

method mAP r = 1 r = 5

BoW+KISSME[38] 12.2 25.1 -
IDNet [39] 45.0 65.2 -

TriHard [14] 53.5 72.4 -
SVDNet[24] 56.8 76.7 86.4

CamStyle[44] 57.6 78.3 -
HA-CNN[16] 63.8 80.5 -
GP-reID[1] 72.8 85.2 93.9

SCPNet-s 62.6 80.3 89.6
SCPNet-a 68.5 84.8 91.9

Table 9. Experimental results on the
CUHK-SYSU

Methods mAP r = 1 r = 5

VGG16+RSS[30] 55.7 62.7 -
DLDP [23] 74.0 76.7 -
NPSM [19] 77.9 81.2 -

SCPNet-s 90.0 91.9 96.9
SCPNet-a 93.1 94.6 98.0

and lags behind the best results with a slight gap on DukeMTMC-ReID. It is
worth mentioning that DSR also reported its results on Market1501, which our
SCPNet outperforms by 10.5% rank-1 accuracy and 17.5% mAP. In conclusion,
the SCPNet can perform well on the holistic person ReID task.

Results on Partial ReID. We compare the proposed SCPNet to the state-of-
the-art methods, including AMC, SWM, AMC+SWM, DSR and Resizing model,
on the Partial REID and Partial-iLIDS datasets. There are p = 60 and p = 119
individuals in each of the test sets for Partial REID and Partial-iLIDS datasets
respectively. The state-of-the-art results are taken from [13] and more details can
be found in it. For the SCPNet, λ is set to 10 and R is 4. Note that the state-
of-the-art results are achieved by supervised learning, while our SCPNet has
not been trained on the Partial REID and Partial-iLIDS datasets. As Table. 10
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shown, our SCPNet finally achieves 68.3% and 84.9% rank-1 accuracy on Partial
REID and Partial-iLIDS respectively. These unsupervised cross-domain results
beat existing supervised learning methods by a large margin (25.3% and 30.3%
rank-1 accuracy on Partial REID and Partial-iLIDS respectively). However, the
Baseline (R = 4, λ = 0) also performs better than existing methods. This sur-
prising result gives us an inspiration. We can use the holistic person images
to train a partial ReID model, because holistic person images are more easily
collected than partial person images. And with our proposed spatial-channel par-
allelism, the ReID model can be more suitable for partial person images without
extra computational cost in the inference stage.

Table 10. Experimental results on Partial REID Datasets with single query (N = 1)

Partial REID, p = 60 Partial-iLIDS, p = 119

Method Type r = 1 r = 5 r = 10 r = 1 r = 5 r = 10

Resizing model supervised 19.3 40.0 51.3 21.9 43.7 55.5

SWM [41] supervised 24.4 52.3 61.3 33.6 53.8 63.3

AMC [41] supervised 33.3 52.0 62.0 46.8 69.6 81.9

AMC+SWM [41] supervised 36.0 60.0 70.7 49.6 72.7 84.7

DSR (Multi-scale)[13] supervised 43.0 75.0 76.7 54.6 73.1 85.7

Baseline unsupervised 60.0 78.3 83.7 78.2 89.1 92.4

SCPNet-a † unsupervised 56.3 73.3 80.5 69.8 89.9 95.0

SCPNet-a unsupervised 68.3 80.7 88.3 84.9 92.4 94.1

† After the initial version of this paper, [13] releases a new evaluation protocol,
and we also provide scores under the new protocol here.

5 Conclusions

In this paper, we propose a two-branch deep CNN network called Spatial-
Channel Parallelism Network (SCPNet) with a local feature branch and a global
feature branch. The local feature branch output local features without a global
view, while the global feature branch output global features with heavily coupling
and redundancy. With spatial-channel parallelism, the channel feature branch
can learn local spatial feature through the guidance of local feature branch, and
the re-learned local features are more discriminative with a global view, achieving
a balance between global and local representation. In this way, the network can
also extract local features automatically from the whole image which makes it
also more suitable for partial ReID. A single SCPNet model is trained end-to-end
on four holistic ReID datasets and achieves the state-of-the-art results on all four
datasets. Furthermore, the trained model also outperforms the state-of-the-art
results on two partial ReID datasets by a large margin without training.
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