
R-FCN++: Towards Accurate Region-Based
Fully Convolutional Networks for Object Detection

Zeming Li,1 Yilun Chen,2 Gang Yu,2 Yangdong Deng1

1School of Software, Tsinghua University, {lizm15@mails.tsinghua.edu.cn, dengyd@tsinghua.edu.cn }
2 Megvii Inc. (Face++), {chenyilun, yugang}@megvii.com

Abstract

Region based detectors like Faster R-CNN (Ren et al. 2015)
and R-FCN (Li et al. 2016) have achieved leading perfor-
mance on object detection benchmarks. However, in Faster
R-CNN, RoI pooling is used to extract feature of each re-
gion, which might harm the classification as the RoI pooling
loses spatial resolution. Also it gets slow when a large num-
ber of proposals are utilized. R-FCN is a fully convolutional
structure that uses a position-sensitive pooling layer to extract
prediction score of each region, which speeds up network by
sharing computation of RoIs and prevents the feature map
from losing information in RoI-pooling. But R-FCN can not
benefit from fully connected layer (or global average pool-
ing), which enables Faster R-CNN to utilize global context
information.
In this paper, we propose R-FCN++ to address this issue
in two-fold: first we involve Global Context Module to im-
prove the classification score maps by adopting large, separa-
ble convolutional kernels. Second we introduce a new pool-
ing method to better extract scores from the score maps, by
using row-wise or column-wise max pooling. Our approach
achieves state-of-the-art single-model results on both Pascal
VOC and MS COCO object detection benchmarks, 87.3% on
Pascal VOC 2012 test dataset and 42.3% on COCO 2015 test-
dev dataset. Code will be made publicly available.

Introduction

We are witnessing significant progresses in generic object
detection, partly due to the rapid development of deep con-
volutional neural networks. Among various CNN-based ob-
ject detectors, one of the most notable work is Region-based
Convolutional Neural Network (R-CNN) (Girshick et al.
2014). R-CNN exploits deep CNN to classify regions. Fol-
lowing region-based detection pipeline, Faster R-CNN (Ren
et al. 2015) and R-FCN (Li et al. 2016) are proposed to fur-
ther improve the accuracy and speed.

Compared with single-stage pipeline such as
YOLO (Redmon et al. 2016) and SSD (Liu et al.
2016), Faster R-CNN achieves better performance by
a second-stage classification and a bounding-box regres-
sion. However, Faster R-CNN is time-consuming when the
number of object proposals in its first-stage is large. Also,

Copyright c© 2018, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

Figure 1: Comparison of Faster R-CNN, R-FCN, and our
R-FCN++. Faster R-CNN uses RoI pooling layer to sam-
ple feature, then involving fully connected layer to do final
prediction. R-FCN uses 1× 1 convolution to generate score
maps. Scores are obtained by average voting every part of
the RoI, and each part is pooled by Position Sensitive RoI
Pooling (PSPooling). Our R-FCN++ includes Global Con-
text Model (GCM) to generate score map and Row-Column
Max Pooling (RCMPooling) to pool the parts of high re-
sponse for the final prediction.

Faster R-CNN needs to perform a RoI-pooling (may lose in-
formation due to regular sampling) on the cropped features,
which might be harmful to the region classification. To
avoid those shortcomings, R-FCN uses Fully Convolutional
Network (FCN) to generate a classification score map and
a location map. It efficiently gets the final prediction by
simply averaging the scores of the object parts. However,
the part in R-FCN might be too local to be discriminative
enough because there is no fully connected layer or global
average pooling layer to provide the global context.

In order to improve the classification capability of R-
FCN, we need to let the network to see a larger context.
However, it is inherently contradictory to employ a fully
connected layer or a global average pooling into a FCN.
Also, taking larger convolution kernel is expensive and

The Thirty-Second AAAI Conference
on Artificial Intelligence (AAAI-18)

7073



tends to seriously decrease the computation efficiency. To
tackle such a dilemma, we employ a Global Context Mod-
ule (GCM) to enlarge the kernel and also maintain its effi-
ciency.

Given the score maps, it is worth noting that objects usu-
ally do not occupy the whole box. R-FCN pools every part
in the box, which is not optimal for the final prediction. Dif-
ferent from Position Sensitive Pooling used in R-FCN, we
introduce Row-Column Max Pooling (RCMPooling). Since
objects should have at least one part in every row and col-
umn in box, RCMPooling only pools the max score in every
row and column followed by averaging. Fig. 1 provides the
general ideas of our algorithm and two baselines (Faster R-
CNN and R-FCN).

In summary, this paper introduces an improved R-FCN
detection method we called “R-FCN++” to tackle the fol-
lowing two issues: (i) Fully convolutional networks are lack
of context information. (ii) Object’s score can’t correspond
well to the box’s score, because we pool from the box in-
stead of the object. Our contributions are:

1. Considering the importance of the global context, we pro-
pose to use Global Context Module to improve score
maps for classification. Furthermore, we present Light-
GCM, which is a light version of GCM, to strike a good
balance between accuracy and speed.

2. Given the score maps generated by GCM, we introduce a
new pooling method called RCMPooling to extract proper
scores for RoIs, which further improve the classification
performance.

3. By integrating the proposed two improvements, our sys-
tem (single model) significantly outperforms all recent
state-of-art detectors on both Pascal VOC and MS COCO
datasets..

Related work

With the rapid progress of convolutional neural networks
(CNN), object detection has been largely improved. Some
of the recent research papers for object detection are listed
as follows.

Region-based Convolutional Neural Network: R-CNN
has been seen as a milestone for CNN object detection. In
R-CNN, hand-crafted methods such as Selective Search (Ui-
jlings et al. 2013), Edge Boxes (Zitnick and Dollár 2014),
and MCG (Arbeláez et al. 2014) are first involved to gener-
ate proposals. The whole network has to be forwarded for
each proposal. To keep enough information of images and
avoid repetitive computation, SPPnet (He et al. 2014) pro-
poses Spatial Pyramid Pooling layer to pool the features for
proposals to a fix shape before we do prediction, which is
similar to the RoI pooling. But similar as R-CNN (Girshick
et al. 2014), SPPnet (He et al. 2014) uses multi-stage training
to do object classification and bounding box regression sepa-
rately. Fast R-CNN (Girshick 2015) introduces a multi-task
learning for joint training object classification and bound-
ing box regression, which reduce training time and improve
the detection accuracy simultaneously. However, generating
proposals costs a lot of time and is independent of CNN. To

further speed up proposal generation, Faster R-CNN (Ren et
al. 2015) proposes a novel Region Proposal Network(RPN),
which can be embedded into the Fast R-CNN framework
seamlessly.

Proposal-free Convolutional Neural Network: Region
based detectors rely on pre-computed object proposals,
which involve additional computations. YOLO (Redmon et
al. 2016) and SSD (Liu et al. 2016) directly predict object’s
position and category. Since there are no region proposals,
YOLO-style models do not have to warp the features used in
RoI Pooling. Though proposal-free models are usually faster
than R-CNN style models, it seems that region-based detec-
tors are more accurate.

Region-based Fully Convolution Network: R-FCN (Li
et al. 2016) is another region based detection framework.
Different from traditional R-CNN pipelines, instead of
warping CNN features for RoI, R-FCN use Position Sen-
sitive Polling to crop the score for region proposals. Thus
R-FCN has a more unified structure. The shared computa-
tions among RoIs make it more efficient in predicting the
labels and positions of RoIs. However, as mentioned above,
R-FCN can not benefit from fully connected layer (or global
average pooling) in classification which is widely used in
typical R-CNN style detectors.

Our approach
In this section we will present the details of our method.
Fig. 2 D shows our overall R-FCN++ framework. We use
ResNet (He et al. 2016) as our basic feature extractor, which
is shown as “Conv layers” in Fig. 2 D. We denote the feature
maps from the last residual blocks of conv4 and conv5 as C4

and C5 respectively.
RoI-wise Subnetwork is a region-proposal detector that

use features from C5. R-FCN employs a 1×1 convolutional
layer (the number of output channels is 1024) to generate
score maps for classification and regression. Different from
R-FCN, we apply Global Context Module (GCM) to enable
score map to utilize global context information. The GCM
is illustrated in Fig. 2 A. As GCM involves more compu-
tation in networks, we further introduce a light version of
GCM (Light-GCM), which is illustrated in Fig. 2 B. Fol-
lowing GCM, we use two sibling 1 × 1 convolutions to ad-
just output channels for regression and classification respec-
tively. All classes share one box except the background (we
also predict regression for background class). We set the
number of channels in regression to 8× p× p (p is number
of parts we divide each RoI into and p = 7 in our experi-
ments). As for classification, we set the number of channels
to (classes + 1) × p × p. After getting the score maps, we
apply Row-Column Max Pooling (RCMPooling) to get the
final predictions. See Fig. 2 C for more details.

In the following subsections, we will present the details
of GCM (Light-GCM) and RCMPooling.

Global Context Module

Classification is a basic recognition task in deep learning
and has made a great breakthrough. Recent frameworks
like AlexNet (Krizhevsky, Sutskever, and Hinton 2012),VG-
GNet (Simonyan and Zisserman 2014),GoogleNet (Szegedy

7074



Figure 2: overview of our whole pipeline (D). Global Context Module (GCM), Light version of GCM (Light-GCM) and Row-
Column Max Pooling are illustrated in (A), (B) and (C).

et al. 2015) and ResNet (He et al. 2016) first use stack of
convolution layers to extract feature which is lack of global
context information (Zhou et al. 2014; Peng et al. 2017),
then use fully connected layer to globally handle large vari-
ations of transformations. In R-CNN (Girshick et al. 2014)
style pipelines, fully connected layer is used to improve
classification capability. Classifiers need to see feature map
globally rather than locally to deal with spatial information
and different types of input transformations.

In our design, RoI pooling is directly applied on score
map instead of feature map to share computation between
RoIs in RoI-wise subnetwork. De facto, predicting score
map equals to classify label of each pixel in score map. As
mentioned above, global context is important for classifica-
tion. Thus we need to enable network to see larger. One pos-
sible way is exploiting the Fully-Connected layer (FC) to
generate the score map. But in order to make the network
totally fully convolutional, we can not simply employ the
FC into the network.

To overcome those drawbacks, we present Global Context
Module (GCM) to take advantages of fully connected layer
into FCN detection framework. Design details are shown in
Fig. 2 A. By involving separable kernel used by (Szegedy et
al. 2016; Peng et al. 2017), GCM keeps the time efficiency.
Meanwhile, we can involve more context in network by in-
creasing parameter k (kernel size is controlled by k). When
we enlarge the kernel size to the size of feature map, GCM

acts just like a fully connected layer. Thus the network can
deal with the spatial information better. As large separable
convolution still runs slower than small convolution, we pro-
pose a light version of GCM, called Light-GCM as in Fig. 2
B. We can control the cost of computations by regulating the
number of middle channel Cmid in Light-GCM. When Cmid

is set to 64, the speed of Light-GCM is comparable to 1× 1
convolution with 1024 output channels used in R-FCN.

Row-Column Max Pooling

Since we have introduced GCM to help the FCN network to
get a better score map for RoI in last section, the next ques-
tion is how to better pool from score maps and get the final
prediction. In R-FCN, position-sensitive pooling will pool
p× p score maps and each part of the map will be presented
as a semantic part in object. But many boxes are not filled
with objects. One example is shown in Fig. 3. The right-top
part of the box has low score (The lighter the color on the
graph represents, the lower the score), because actually it
does not locate inside the object. This situation often occurs
and is worse once we divide RoI into shape of 7× 7 or finer.
Intuitively the part is not well predicted such as the right-top
can be harmful for the final prediction after average voting.
If we simply use max voting instead, it will get very high
classification score when only one part of RoI is predicted
correctly.

Witnessing these disadvantages, we propose Row-

7075



Figure 3: Difference between PSPooling (Position Sensi-
tive Pooling) and RCMPooling (Row-Column Max Pool-
ing). PSPooling layer pools the p × p parts (here p = 3).
RCMPooling layer only pools the part with the maximum
scores in every row and column, so RCMPooling layer pools
p× 2 parts.

Column Max Pooling (RCMPooling) as in Fig. 2 C. The
channels of score maps are divided into (classes + 1)
groups to learn different classes independently. Following
the method of position-sensitive RoI pooling, we divide the
RoI of size w × h into p × p parts like a square grid. Each
part has the size of w

p × h
p . The scores between these parts

are learned in separable channels independently, that is, p×p
channels are used to learn different parts’ score of RoIs. As
is shown in Fig. 3, RCMPooling only pools the darkest part
of each row and column while PSPooling pools all 3 × 3
parts.

Different from R-FCN pooling each part from position
sensitive score maps, we only pool the parts of max scores
in each row and column from our score maps. The idea of
RCMPooling is based on the observation: when there exists
an object in the box, in the voting score maps, every row
and column should have at least one part of the object, while
the object does not fill every row and column at most of the
time.

Experiments

Our experiments use publicly available py-R-FCN code1.
Following the setting of R-FCN, all experiments adopt
àtrous (Mallat 1999; Long, Shelhamer, and Darrell 2015;
Chen et al. 2014) algorithm and online hard example min-
ing (OHEM) (Shrivastava, Gupta, and Girshick 2016). Our
models are initialized with standard ResNet-101 (He et
al. 2016) or ResNet-50 which is pre-trained on the Ima-
geNet (Russakovsky et al. 2015) classification dataset. Only

1https://github.com/Orpine/py-R-FCN

one Pascal TITAN GPU is used to train our model. We use a
weight decay of 0.0005 and a momentum of 0.9. The detec-
tion results are measured by mean Average Precision(mAP).
For single scale training, the shorter edge of image is resized
to 600 pixels. During testing, we using single scale of 600
pixels unless explicitly stated.

In the next subsection, we first perform a series of ab-
lation experiments to test the effectiveness of our methods.
And the final results of ours are reported in public bench-
marks: Pascal VOC 2007, Pascal VOC 2012 test dataset, and
COCO (Lin et al. 2014) 2015 test-{dev, std} set.

Ablation Experiments

We validate our method on Pascal VOC (Everingham et al.
2010; 2015) and MS COCO (Lin et al. 2014) dataset. For
the experiments on VOC, our algorithm is trained on Pascal
VOC 2007+2012 trainval dataset, and tested on Pascal VOC
2007 test dataset. Learning rate is set to 0.001 for first 80k
iterations and 0.0001 for later 40k iterations. The iter size is
set to 2. For the COCO experiments, our algorithm is trained
on COCO train set and test on minival set. Learning rate is
set to 0.0005 for first 1.2m iterations and 0.00005 for later
720k iterations. The iter size for COCO is set to 1. Unless
explicitly stated, all the experiments in this sub-section are
evaluated on the VOC dataset.

k 1 3 5 7 9 11 15
ap 79.1 79.3 79.6 80.3 80.6 80.6 80.7

Table 1: Comparison of different kernel sizes used in GCM.
As the kernel size increases, more context information is in-
volved for prediction.

Global Context Module Our overall network structure is
illustrated in Fig. 2 D. We adopt R-FCN as our baseline to
discuss the effectiveness of GCM.

Global context information Design Choice. To discuss
the influence of global context for R-FCN individually, we
use PSPooling (pooling shape is 7× 7) to pool our score in-
stead of RCMPooling. We control the kernel size in GCM
by enumerating different k. With expanding the kernel size,
GCM acts more like a fully connected layer which involves
more context information. We try the different kernel sizes
ranging from 3 to 15. Since we use àtrous algorithm in
conv5 stage, kernel size 15 can almost cover the whole fea-
ture map. Thus we enable score maps to use global context
features for their prediction. The results are shown in table
1. Enlarging kernel consistently improve the accuracy. When
the kernel size we use is set to 15, our model surpasses the
baseline by 1.6%. The results prove that global context in-
formation is important for R-FCN.

To clarify the improvement is not mainly due to the struc-
ture of separable convolution. We also test naive large kernel
convolution shown in Fig. 4 B. As shown in table 2, we can
see naive large kernel (k × k Conv) also consistently im-
proves the accuracy.

As we increase the kernel size k, the number of param-
eters increases at the same time. Another hypothesis is that

7076



Figure 4: Different kernels we test to generate score maps.
The 1 × 1 convolution in R-FCN is illustrated in (A), naive
large convolution is illustrated in (B), stack of 3× 3 convo-
lution is illustrated in (C).

kernel size 3 5 7 9
GCM 79.3 79.6 80.3 80.6
k × k Conv 79.4 80.3 80.1 80.6
stack 79.4 79.6 79.7 79.7

Table 2: Comparison of different methods that enlarge the
kernels. GCM uses large separable convolution whose com-
putation is acceptable. k × k convolution is much slower
for lots of parameters. Stack is the approximated way which
uses a stack of small convolutions. i.e. 5×5 convolution can
be approximated two 3× 3 convolution.

the improvement is mainly due to more parameters instead
of context information. In order to analyse the influence of
number of parameters, we also test stack of 3 × 3 convolu-
tions that also increase parameters as shown in Fig. 4 C. Ac-
tually the 5× 5 convolution can be approximated as a stack
of two 3× 3 convolution. But there are some differences be-
tween stack version and GCM in valid receptive filed. Dif-
ferent from directly enlarging kernel, stack version tends to
focus on local features (Zhou et al. 2014). Thus stack ver-
sion has less context than large kernel. Table 2 shows the
comparison results of GCM and stack convolution. From ta-
ble we can see stack version slightly improves the accuracy.
So more parameters are not the key-point to improve the per-
formance.

We also test the influence of reducing the middle chan-
nels in GCM by using Light-GCM in Fig. 2 B. We compare
different number of channels used in middle output layer.
When the number of middle channels is decreased to 64,
Light-GCM has only a few parameters and is comparable
to 1 × 1 convolution used in R-FCN based on speed. Re-
sults are shown in table 3. According to the table, though we
reduce the parameters in GCM by using Light-GCM, our
model still significantly outperforms the baseline. Thus con-
text information plays an important role in R-FCN.

Cmid R-FCN 64 128 256 512 1024
score 79.1 80.3 80.4 80.5 80.6 80.7

Table 3: Comparison of different numbers of middle output
channels (cmid) used in Light-GCM. R-FCN is our baseline
that uses 1x1 convolution with 1024 output channels.

How does Global Context improve the performance?
We claim the good performance of GCM is mainly due
to the improvement of the classification capability. Fig. 5
shows the score maps after PSPooling. When employ GCM,
the prediction of the score map is more accurate compared
with R-FCN. We also investigate the different IoU thresh-
olds used in testing. When threshold is set to 0.1 and 0.3,
most of the groundtruth box will be matched. So the com-
parison is mainly based on the classification ability. Table 5
shows the results. Clearly, combining with GCM improve
the classification capability. In traditional classification task,
feature map needs to be densely connected to handle large
variations of transformations. GCM is much like the fully
connection layer used in classification, which brings more
context for score map’s label prediction.

Figure 5: Score maps after PSPooling, above is 7 × 7 score
map produced by R-FCN, below is produced by R-FCN us-
ing Global Context Model.

Row-Column Max Pooling Here we test RCMPooling on
our framework shown in Fig. 2 D. R-FCN is adopted as our
baseline. In subsection , we propose RCMPooling to try ex-
tracting score from score maps more properly. The key idea
is to avoid pooling background part in RoI which probably
harms the following voting. As we have introduced GCM
to get better score maps, we expect that combining GCM
with RCMPooling should further improve the final predic-
tion accuracy. To verify these claims, first we remove the
GCM model (replace GCM with 1 × 1 convolution used in
R-FCN) and only test the influence of RCMPooling (We set
p to 7 in RCMPooling). Then we add GCM model to check
if they would conflict with each other. The results are shown
in table 4. RCMPooling improves the accuracy and it works
compatible with GCM.

method VOC score COCO score
baseline (R-FCN) 79.1 28.0
+GCM (k=15) 80.7 29.5
+RCMPooling 79.6 28.9
+RCMPooling + GCM (k=15) 81.2 30.4

Table 4: Comparison between models with RCMPooling
and without RCMPooling. Baseline is R-FCN using PSPool-
ing 7x7.

7077



overlap thresh 0.1 0.3 0.5 0.7 0.9
baseline (R-FCN) 84.9 83.9 79.1 62.0 12.8
+RCMPooling 85.2 84.2 79.6 63.6 13.6
+GCM 85.7 84.7 80.7 64.3 13.0
+RCMPooling+GCM 86.0 85.0 81.2 65.1 14.3

Table 5: Comparison of different IoU thresholds used to test
mAP.

RCMPooling provides a better prediction for voting (both
classification and regression). We use a different IoU thresh-
old to test mAP. When IoU threshold is set to 0.9, predicted
box needs to be accurate in location. When IoU threshold is
set to 0.1, predicted box needs to be accurate in classifica-
tion. According to the table 5, we set IOU threshold ranging
from 0.1 to 0.9, RCMPooling improves the accuracy consis-
tently.

Pascal VOC

In this section, we evaluate our model on Pascal VOC2007
and VOC2012 (Everingham et al. 2010; 2015) dataset. Fol-
lowing (Li et al. 2016; Ren et al. 2015; Liu et al. 2016), we
pre-train our model on MS COCO (Lin et al. 2014) dataset.
Then fine-tune the model on VOC 2007 trainval and VOC
2012 trainval (”07+12”). For multi-scale training, following
the method used in R-FCN, in each iteration, we sample the
scale randomly from {400,500,600,700,800} pixels, and re-
size the short edge of image into the scale we sampled. For
testing, we only using single scale 600 pixels.

Results are shown in table 6. Our single test model gets
84.9% on VOC2012 test, which significantly surpass R-FCN
and Faster R-CNN. Meanwhile, we try the post-processing
such as left-right flipped images, multi-scale testing and box
voting, which also bring the benefits for final results. On Pas-
cal VOC 2012 test set, we achieve 87.3%. Compared with
all the recent state-of-the-arts shown in table 7, our single
model reaches the new state-of-art.

method training data 07test 12test
Faster R-CNN 07+12 76.4 73.8
Faster R-CNN +++ 07+12+COCO 85.6 83.8
R-FCN 07+12 79.5 77.6
R-FCN multi-sc train 07+12 80.5 78.8
R-FCN multi-sc train 07+12+COCO 83.6 82.0
RFCN++ 07+12 81.2 79.7
RFCN++ multi-sc train 07+12 82.1 80.6
RFCN++ multi-sc train 07+12+COCO 86.3 84.9

Table 6: Experimental results mAP(%) on VOC2007 test
dataset and VOC2012 test dataset . R-FCN++ involves both
GCM and RCMPooling.

Efficiency Study. Another thing we concern is the speed
of inference. GCM has many parameters which results in
additional overheads in network. With a slightly trade-off
in accuracy, we introduce a fast version of our algorithm,
which uses ResNet-50 as the basic feature extractor and
Light-GCM to speed up network inference. We set the num-
ber of middle channels in Light-GCM to 64, noticing that

method mAP(%)
YOLOv2 (Redmon and Farhadi 2016) 78.2
SSD512(VGG16) (Liu et al. 2016) 82.1
Faster R-CNN +++ (Ren et al. 2015) 83.8
R-FCN multi-sc train,test (Li et al. 2016) 85.0
GCM+RCMPooling multi-sc train,test 87.3

Table 7: Comparisons of single-model on VOC2012 test. All
models are trained on VOC07+12+COCO dataset.

Light-GCM has less parameters and is faster in network in-
ference. RCMPooling is also involved in our fast version.
The Results are shown in table 8. Our fast version obtains
competitive results of 79.8% based on VOC2007 test set,
achieving speed of 0.072s per image at a test-time, which is
faster than R-FCN. Compared with R-FCN which is based
on ResNet-101, our fast version gets comparable result by
using ResNet-50. It shows that our method is more econom-
ical than increasing the basic feature extractor complexity.

method base model mAP test time
R-FCN ResNet-101 79.5 0.093
GCM+RCMPooling ResNet-101 81.2 0.130
Light-GCM+RCMPooling ResNet-101 80.7 0.104
Light-GCM+RCMPooling ResNet-50 79.8 0.072

Table 8: Comparisons of inference time. Our model uses
GCM and RCMPooling. Compared with R-FCN, our model
runs slightly slower but provides better results. Our fast ver-
sion use Light-GCM and RCMPooling, the number of mid-
dle channel in Light-GCM is set to 64. Fast version yields
competitive results and is also faster than R-FCN.

method test-dev
AP@.5 AP APs APm APl

R-FCN 51.5 29.2 10.3 32.4 43.3
R-FCN ms train 51.9 29.9 10.8 32.8 45.0
R-FCN++ 53.9 32.2 12.2 35.4 47.6
R-FCN++ ms train 56.6 34.0 14.1 36.9 49.1

Table 9: Comparison between our model and baseline R-
FCN based on single-scale test. All methods use COCO2014
trainval dataset to train, and COCO2015 test-dev dataset to
test.

MS COCO

We evaluate our model on MS COCO (Lin et al. 2014),
following the training strategy provide by py-R-FCN. The
single-scale test results are shown in table 9. Our single-
scale trained R-FCN++ yields results of 53.9%/32.2%
in COCO 2015 test-dev dataset, which outperforms R-
FCN (51.5%/29.2%), and our multi-scale trained model
yields 56.6%/34%, which surpasses R-FCN (51.9%/29.9%)
by a large margin.

To compare our model with the other detectors listed in
the COCO leaderboard. We reproduce the R-FCN baseline,
following the training strategy provide by FPN (Lin et al.
2016). Table 10 shows our reproduce baselines. Since FPN

7078



method coco2014 minival
AP@.5 AP APs APm APl

R-FCN 56.9 34.4 17.8 38.7 47.3
R-FCN++ 58.2 36.2 19.1 41.1 49.4
R-FCN++ ms train 59.8 37.5 21.0 42.7 50.8

Table 10: Reproduced baselines which used COCO2014
trainval dataset to train, and COCO2014 minival5K to test.

method test-dev
AP@.5 AP APs APm APl

Faster R-CNN 55.7 34.9 15.6 38.7 50.9
R-FCN 53.2 31.5 14.3 35.5 44.2
FPN 59.1 36.2 18.2 39.0 48.2
R-FCN++ 63.8 42.3 25.2 46.1 54.2

Table 11: Comparisons of single-model results on COCO
2015 detection benchmark

use 800 size for single-scale training, we use the scales {600,
700, 800, 900, 1000} for multi-scale training.

we involve left-right flipping, multi-scale testing and box
voting. Besides we use Soft-NMS (Bodla et al. 2017) to fil-
ter the boxes. The results are shown in table 11. Our sin-
gle model yields 42.3% in COCO 2015 test-dev dataset, sur-
passing all of competitors.

Conclusion

We introduce an improved R-FCN detection method called
“R-FCN++”. Our method takes advantage of both Faster R-
CNN and R-FCN. First we present Global Context Module
to improve score maps for classification, which is motivated
by effectiveness of fully connected layer used to do classifi-
cation in Faster R-CNN. Then we introduce a new pooling
method RCMPooling to better extract scores in score maps.
Our model shows significant improvements over state-of-
art detectors on both Pascal VOC and COCO benchmark
datasets.

References

Arbeláez, P.; Pont-Tuset, J.; Barron, J. T.; Marques, F.; and
Malik, J. 2014. Multiscale combinatorial grouping. In Pro-
ceedings of the IEEE Conference on Computer Vision and
Pattern Recognition, 328–335.
Bodla, N.; Singh, B.; Chellappa, R.; and Davis, L. S. 2017.
Improving object detection with one line of code. CoRR
abs/1704.04503.
Chen, L.-C.; Papandreou, G.; Kokkinos, I.; Murphy, K.; and
Yuille, A. L. 2014. Semantic image segmentation with deep
convolutional nets and fully connected crfs. arXiv preprint
arXiv:1412.7062.
Everingham, M.; Van Gool, L.; Williams, C. K.; Winn, J.;
and Zisserman, A. 2010. The pascal visual object classes
(voc) challenge. International journal of computer vision
88(2):303–338.
Everingham, M.; Eslami, S. A.; Van Gool, L.; Williams,
C. K.; Winn, J.; and Zisserman, A. 2015. The pascal vi-

sual object classes challenge: A retrospective. International
Journal of Computer Vision 111(1):98–136.
Girshick, R.; Donahue, J.; Darrell, T.; and Malik, J. 2014.
Rich feature hierarchies for accurate object detection and se-
mantic segmentation. In Proceedings of the IEEE confer-
ence on computer vision and pattern recognition, 580–587.
Girshick, R. 2015. Fast r-cnn. In Proceedings of the IEEE
International Conference on Computer Vision, 1440–1448.
He, K.; Zhang, X.; Ren, S.; and Sun, J. 2014. Spatial
pyramid pooling in deep convolutional networks for visual
recognition. In European Conference on Computer Vision,
346–361. Springer.
He, K.; Zhang, X.; Ren, S.; and Sun, J. 2016. Deep residual
learning for image recognition. In Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition,
770–778.
Krizhevsky, A.; Sutskever, I.; and Hinton, G. E. 2012.
Imagenet classification with deep convolutional neural net-
works. In Advances in neural information processing sys-
tems, 1097–1105.
Li, Y.; He, K.; Sun, J.; et al. 2016. R-fcn: Object detection
via region-based fully convolutional networks. In Advances
in Neural Information Processing Systems, 379–387.
Lin, T.-Y.; Maire, M.; Belongie, S.; Hays, J.; Perona, P.; Ra-
manan, D.; Dollár, P.; and Zitnick, C. L. 2014. Microsoft
coco: Common objects in context. In European Conference
on Computer Vision, 740–755. Springer.
Lin, T.-Y.; Dollár, P.; Girshick, R.; He, K.; Hariharan, B.;
and Belongie, S. 2016. Feature pyramid networks for object
detection. arXiv preprint arXiv:1612.03144.
Liu, W.; Anguelov, D.; Erhan, D.; Szegedy, C.; Reed, S.; Fu,
C.-Y.; and Berg, A. C. 2016. Ssd: Single shot multibox
detector. In European Conference on Computer Vision, 21–
37. Springer.
Long, J.; Shelhamer, E.; and Darrell, T. 2015. Fully con-
volutional networks for semantic segmentation. In Proceed-
ings of the IEEE Conference on Computer Vision and Pat-
tern Recognition, 3431–3440.
Mallat, S. 1999. A wavelet tour of signal processing. Aca-
demic press.
Peng, C.; Zhang, X.; Yu, G.; Luo, G.; and Sun, J.
2017. Large kernel matters–improve semantic segmen-
tation by global convolutional network. arXiv preprint
arXiv:1703.02719.
Redmon, J., and Farhadi, A. 2016. Yolo9000: Better, faster,
stronger. arXiv preprint arXiv:1612.08242.
Redmon, J.; Divvala, S.; Girshick, R.; and Farhadi, A. 2016.
You only look once: Unified, real-time object detection. In
Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition, 779–788.
Ren, S.; He, K.; Girshick, R.; and Sun, J. 2015. Faster r-cnn:
Towards real-time object detection with region proposal net-
works. In Advances in neural information processing sys-
tems, 91–99.

7079



Russakovsky, O.; Deng, J.; Su, H.; Krause, J.; Satheesh,
S.; Ma, S.; Huang, Z.; Karpathy, A.; Khosla, A.; Bern-
stein, M.; et al. 2015. Imagenet large scale visual recog-
nition challenge. International Journal of Computer Vision
115(3):211–252.
Shrivastava, A.; Gupta, A.; and Girshick, R. 2016. Train-
ing region-based object detectors with online hard example
mining. In Proceedings of the IEEE Conference on Com-
puter Vision and Pattern Recognition, 761–769.
Simonyan, K., and Zisserman, A. 2014. Very deep convo-
lutional networks for large-scale image recognition. arXiv
preprint arXiv:1409.1556.
Szegedy, C.; Liu, W.; Jia, Y.; Sermanet, P.; Reed, S.;
Anguelov, D.; Erhan, D.; Vanhoucke, V.; and Rabinovich,
A. 2015. Going deeper with convolutions. In Proceed-
ings of the IEEE Conference on Computer Vision and Pat-
tern Recognition, 1–9.
Szegedy, C.; Vanhoucke, V.; Ioffe, S.; Shlens, J.; and Wojna,
Z. 2016. Rethinking the inception architecture for computer
vision. In Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition, 2818–2826.
Uijlings, J. R.; Van De Sande, K. E.; Gevers, T.; and Smeul-
ders, A. W. 2013. Selective search for object recognition.
International journal of computer vision 104(2):154–171.
Zhou, B.; Khosla, A.; Lapedriza, A.; Oliva, A.; and Torralba,
A. 2014. Object detectors emerge in deep scene cnns. arXiv
preprint arXiv:1412.6856.
Zitnick, C. L., and Dollár, P. 2014. Edge boxes: Locating
object proposals from edges. In European Conference on
Computer Vision, 391–405. Springer.

7080


