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Abstract

We present a new approach to localize extensive facial
landmarks with a coarse-to-fine convolutional network cas-
cade. Deep convolutional neural networks (DCNN) have
been successfully utilized in facial landmark localization
for two-fold advantages: 1) geometric constraints among
facial points are implicitly utilized; 2) huge amount of train-
ing data can be leveraged. However, in the task of exten-
sive facial landmark localization, a large number of fa-
cial landmarks (more than 50 points) are required to be
located in a unified system, which poses great difficulty in
the structure design and training process of traditional con-
volutional networks. In this paper, we design a four-level
convolutional network cascade, which tackles the problem
in a coarse-to-fine manner. In our system, each network
level is trained to locally refine a subset of facial land-
marks generated by previous network levels. In addition,
each level predicts explicit geometric constraints (the posi-
tion and rotation angles of a specific facial component) to
rectify the inputs of the current network level. The combi-
nation of coarse-to-fine cascade and geometric refinement
enables our system to locate extensive facial landmarks (68
points) accurately in the 300-W facial landmark localiza-
tion challenge.

1. Introduction

Facial landmark localization plays a critical role in the

systems of face recognition and face analysis. In a recent

paper of Chen’s [4], it is shown that simple features can

achieve leading performance on face recognition if accu-

rate facial landmarks can be utilized. For this reason, the

problem of facial landmark localization has attracted exten-

sive interests in the past years. In general, there are three

main methods to locate the facial landmarks from a face

image: the first category performs a sliding window search

based on local-patch classifiers, which encounters the prob-

lems of the ambiguity or corruption in local features. Be-

Figure 1. Comparison of landmark localization systems. The

first row is the original facial image. The second row is produced

by local-patch detectors included in OpenCV [3]. The third row

is produced by Stasm [9], an open source AAM implementation.

Our result is shown in the fourth row, which outperforms the rest

significantly.

sides, it is difficult to incorporate the global contextual in-

formation into the local search framework; the second cate-

gory of methods is the well-known framework of the Active

Shape Model (ASM) [2] and the Active Appearance Model

(AAM) [5]. These methods fit a generative model for the

global facial appearance and hence are robust to local cor-

ruptions. However, to estimate the parameters in the gener-

ative models, expensive iterative steps are required.

Recently, a new framework based on explicitly regres-

sion methods [10, 11] has been proposed. In this frame-

work, the problem of landmark localization is considered

directly as a regression task, and a holistic regressor is used

to compute the landmark coordinates. Compared to the

aforementioned methods, this framework is more robust and

stable since the global contextual information is incorpo-

2013 IEEE International Conference on Computer Vision Workshops

978-0-7695-5161-6/13 $31.00 © 2013 IEEE

DOI 10.1109/ICCVW.2013.58

386

2013 IEEE International Conference on Computer Vision Workshops

978-1-4799-3022-7/13 $31.00 © 2013 IEEE

DOI 10.1109/ICCVW.2013.58

386



Figure 2. System overview. The first-level network predicts the bounding boxes for the inner points and contour points separately. For the

inner points, the second level predicts an initial estimation of the positions which are refined by the third level for each component. The

fourth level is used to improve the predictions of mouth and eyes by taking the rotated image patch as new input. Two levels of separate

networks are used for contour points. For clarity reason, not all of the 68 points are rendered in the figure.

rated at the very beginning; it is also more efficient since no

iterative fitting step or sliding window search is required.

Instead of the random ferns used in [10], Sun [11] applies

more powerful deep convolutional neural network (DCNN)

in the regression framework and achieves the state-of-the-

art performance.

However, facial landmark localization remains a very

challenging problem. The challenge comes from the large

variations of facial appearance due to the changes in pose,

lightening, expression and etc. The task is even more chal-

lenging when a large number of landmark points is required.

The nature of the challenge varies dramatically across dif-

ferent facial points, so a single-model method would prob-

ably fail. On the other hand, employing individual systems

for each point sharply increases computational time. How-

ever, the large number of points is a two-edge sword: valu-

able information pertaining to the inner structure of the rel-

ative position of the landmarks becomes present. The geo-

metric constraints on the global arrangement of facial com-

ponents and the interaction of points inside a component

provides hope for improvement in accuracy and robustness

if the system amply exploits them.

To address the challenge, we carefully design a multi-

level convolutional network cascade, which tackles the task

of extensive facial landmark localization with a coarse-to-

fine network cascade. Our contributions are three-fold: 1)

unlike [11] predicts sparse facial landmarks (5 points) with

network cascade, we validate the effectiveness of convolu-

tional network cascade for the problem of extensive facial

landmark localization; 2) we design a coarse-to-fine net-

work cascade to spread the network complexity and train-

ing burden of traditional convolutional networks; 3) we

show that explicit geometric refinement (estimate the po-

sition/rotation of facial components and rectify the inputs

of each network level) can improve the accuracy and ro-

bustness significantly. Extensive experiments show that our

system is accurate and robust.

2. Overview

Figure 2 gives a brief illustration of our multi-level facial

landmark localization system. We use the term inner points
to denote the 51 points for eyes, eyebrows, mouth and nose,

and contour points for the 17 points on the contour. The

subsystems for the inner points and contour points are sep-

arated from the first level. In the first level, two neural net-

works are trained to estimate the bounding boxes (the max-

imum and minimum value of the x-y coordinates) for the

inner points and contour points independently. The boxes

are fed into the rest of the system respectively.

Inner points. For the inner 51 points, three levels of

convolutional neural networks are trained in addition. Af-

ter obtaining the bounding box of inner points, the 51 inner

landmarks are initially estimated by the second level. Based

on the initial estimation, the regions for 6 facial components

(i.e., eyebrows, eyes, mouth and nose) are computed in sep-

arate. The third level is trained to refine the landmarks of

each facial component independently. The rotation angle of

each component is estimated and corrected to upright, and

the rotated patches are fed to the fourth level network for

the final results.

Contour points. A simpler network cascade is utilized
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for the localization of contour points. Given the bounding

box covering the cheek, the second level takes the cropped

image as input and computes the coordinates of the contour

points from the raw pixels. Third and fourth level networks

are not utilized due to the limited time, and we leave the fur-

ther exploitation of deeper network cascade to future work.

3. Coarse-to-fine DCNN cascade

The central idea of our framework is the design of

coarse-to-fine cascade. Each network level refines a sub-

set of the landmarks inside a region computed by previ-

ous levels. In the first level, the face is divided into two

parts : inner and contour. After the second level, the facial

components of inner part are further separated. We do not

train individual networks for each facial landmark to reduce

computational cost. There are multiple advantages of the

coarse-to-fine framework.

3.1. Separation of the loss function

The hardness of localization is unbalanced across dif-

ferent landmarks. Particularly, the contour is significantly

more difficult than inner points for two reasons. First, the

facial image provides less local texture information for con-

tour points compared to the inner landmarks, but the irrel-

evant information from the background near these points is

noticeably more. Additionally, the ground truth for these

points is by nature more noisy, because the definition of the

exact position of each point is more ambiguous. These fac-

tors result in the heavy imbalance between the training er-

rors of the two parts, hence the L2 loss function will be

dominated by the contour if all 68 points are trained to-

gether. So training two independent subsystems give the

whole system a chance to learn the detailed structure of in-

ner points instead of devoting most of its capacity to fitting

the “difficult” contour. This argument is supported by our

experiment.

Among the inner points, the relative difficulties of the fa-

cial components are still not uniform. As shown in Section

5, eyebrows are notably harder whilst the system’s predic-

tion on eyes is more accurate.

3.2. Multi-level refinement

The localization task is decomposed into multiple stages

at each of which the interaction between the points or com-

ponents is considered. In the first level, the relative position

of the face contour, which is closely related to the pose of

the face, is computed. In higher levels, more detailed infor-

mation is revealed step by step. The second level network

learns the relative location of the facial components, and the

task of recognizing the shape inside a component is handled

by succeeding levels. It is possible that the third level net-

work is compromised by local corruption. However, since

global information is taken account in the second level, the

final output still makes sense.

The bounding box carries the information of the position

and range of the group of points to the next level. Thus the

image inside the box is generally well aligned in terms of

translation and scaling. In contrast, the rectangle generated

by the face detector is far from satisfactory. In some cases,

it contains too much irrelevant background information that

confuses the neural network. Moreover, the face is not al-

ways centered in the rectangle, which further complicates

the localization task for the system.

DCNN is generally considered to be powerful enough to

handle great variation in the input image, but the capacity

of a single network is still limited by its size. Given insuffi-

cient prior knowledge, the network will devote a consider-

able part of its power to finding where the face is. To tackle

the problem, the “divide-and-conquer” strategy is adopted,

which divides the task into two steps: first to find the over-

all position, then to compute the relative position inside the

region. For the whole face, the first step is performed by

the first level networks whose supervision signal does not

include the detailed structure of the points inside the bound-

ing box, and the rest of the task is left to succeeding levels.

In this way, the burden is shared across networks in differ-

ent levels, and good performance is achieved by networks

of only moderate size.

The idea is extended further in the third and fourth level

where the orientation is canonicalized by means of a rota-

tion of the image patch. Rotation is considered only after

the third level since the consequence caused by failure to

predict a robust rotation angle in the early levels is serious.

Experimental results show that the fourth level gives a per-

formance gain that is not as dramatic as the previous levels

but absolutely non-negligible.

4. Implementation Details
Deep convolutional neural network. We use DCNN

as the basic building block of the system. The network

takes the raw pixels as input and performs regression on

the coordinates of the desired points. Figure 3 is an illus-

tration of the deep architecture. Three convolutional layers

are stacked after the input nodes. Each convolutional layer

applies several filters to the multichannel input image and

output the responses. Let the input to the t-th convolutional

layer be It, then the output is computed according to

Ct
i,j,k = | tanh(

ht−1∑

x=0

wt−1∑

y=0

ct−1∑

z=0

It−1
i−x,j−y,z · F t

x,y,k,z +Bk)|

where I represents the input to the convolutional layer, F
and B are tunable parameters. Following the standard prac-

tice, hyper-tangent and absolute value function are applied

to the filter responses to bring non-linearity to the system.
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Figure 3. Typical structure of networks in our system. The

network consists of convolutional layers, unshared convolutional

layers and fully-connected layers. Max-pooling is performed af-

ter convolutional layers. In unshared convolutional layers, the

weights used in different positions are different. Tanh and absolute

value non-linearity is inserted between the layers. The architec-

tures of other networks are similar to this.

Max-pooling with non-overlapping pooling regions is

used after convolution

Iti,j,k = max
0≤x<d,0≤y<d

(Ct
i·d+x,j·d+y,k)

It seems unnatural to use max-pooling layers in a localiza-

tion task that seeks pixel level accuracy. However, these

layers are still adopted in the belief that the robustness of

the whole system induced by these layers well compensates

for the loss of information in the pooling operation, and

the overall shape and relative position of the landmarks are

more important than the pixel level detail in the input image.

After the convolutional layers is an unshared-convolutional

layer. The filter applied is not the same across different po-

sitions, so the layer is local-receptive rather than convolu-

tional.

Ci,j,k = | tanh(
h−1∑

x=0

w−1∑

y=0

c−1∑

z=0

Ii−x,j−y,z·Fi,j,x,y,k,z+Bi,j,k)|

The final prediction is produced by one or two fully con-

nected layers. Parameters are adjusted to minimize the L2

loss:
∑

I0

|layerm ◦ layerm−1 ◦ · · · ◦ layer1(I0)− label(I0)|22

Network size The architecture of our DCNN is mo-

tivated by the work of [11]. Table 1 gives a summary of

the network architectures. We employ three kinds of net-

works in different parts of the system. The network used in

the second level, N1, has higher resolution since its input

covers a range of the whole face.

Training. The neural networks are trained by stochas-

tic gradient descent with hand-tuned hyper-parameters. To

avoid severe over-fitting, the image is randomly altered by

slight similarity transformation (rotating, translating and

network N1 N2 N3

input 60x60 40x40 40x40

conv. 1 5x5x20 5x5x20 5x5x20

conv. 2 5x5x40 3x3x40 3x3x40

conv. 3 3x3x60 3x3x60 3x3x60

unshared 3x3x80 2x2x80 2x2x80

hidden 120

Table 1. Resolution, filter size and number of channels of the net-

works. N1 is used for inner points in the second level. N2 is used

for contour points. N3 is used for others. Two fully connected lay-

ers are used in N3 and there are 120 hidden units between them. In

N1 and N2, one fully connected layer directly connects the output

units and the unshared convolutional layer.

scaling) before feeding into the network. This step creates

virtually infinite number of training samples and keeps the

training error close to the error on our validation set. Also,

we flip the image to reuse the left eye’s model for the right

eye, and left eye-brow for right eye-brow.

Image Processing. Image patch is normalized to zero-

mean and unit-variance, then a hyper-tangent function is ap-

plied so that the pixel values fall in the range of [−1, 1].
When cropping the image inside a bounding box, the box

is enlarged by 10% to 20%. More context information is

retained by the enlargement, and it allows the system the

tolerate small failures in the bounding box estimation step.

In the fourth level, the rotation angle is computed from the

position of two corner points in the facial component.

5. Experiment
We conducted our experiments on a dataset contain-

ing 3837 images provided by the 300-Faces in the Wild

Challenge. The images and annotations come from AFW,

LFPW, HELEN, and IBUG [6, 1, 12, 7, 8]. A subset of 500

images are randomly selected as our validation set. Two

performance metrics are used on the validation set: the first

one is the average distance between the predicted landmark

positions and the ground truth normalized by inter-ocular

distances

err =
1

N

N∑

i=1

1
M

∑M
j=1 |pi,j − gi,j |2
|li − ri|2

where M is the number of landmarks, p is the prediction,

g is ground truth, l and r are the positions of the left eye

corner and right eye corner. The second one is the cumu-

lative error curve that plots the percentage of points against

the normalized distance.

5.1. Validation of our method

The degree of difficulty in localizing the 68 landmarks

varies dramatically. Figure 4 shows the validation error
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Figure 4. Cumulative error curves on the validation set. The

errors of the whole face, contour points, inner points and different

facial components are compared. It is shown that the hardness of

different facial landmark points is heavily unbalanced.

Figure 5. Effect of separation of contour and inner points. One

network predicts the 68 points together, and its errors on the inner

points and contour points is C1 and I1 respectively. C2 and I2 are

achieved by two networks that predict those points independently.

for the different facial components. The performance on

contour points is noticeably worse. This observation is the

motivation of our idea to separate the contour from inner

points.

Separating the contour from inner points is essential to

our performance. We conducted a experiment in which

three networks are trained. One of them, which as a larger

size, predicts the 68 points together. The other two learned

the contour and inner points respectively, and the sum of

amount of computation involved in training and testing of

the two networks roughly matches the big network. To

eliminate other influence factors, the input region of the

networks is computed from the ground truth value. Fig-

ure 5 shows that separation improves performance on inner

points while the performance on the contour points is not

worse.

In our system, the rectangle given by the face detector

is not directly used to compute the input region of the net-

work which produces actual facial landmarks. In contrast,

output error value

(51 points) detector box 0.0662

(51 points) level 1 box 0.0401

level 2 0.0510

level 3 0.0438

level 4 0.0431

Table 2. Validation errors achieved under various conditions.

The error value is average normalized distance between prediction

and ground truth. The first two rows shows the error calculated on

the inner points only, while other rows correspond to the average

error on all of the 68 points.

Figure 6. Result comparison in the 300-W Challenge. Our

method outperforms the baseline significantly.

the image for the second level is cropped according to the

first level’s prediction. If the face detector’s box is used di-

rectly instead, performance deteriorates. Table 2 lists the

validation errors achieved under various conditions. It indi-

cates that performance is improved on the inner points by

the bounding box estimated at the first level.

To quantitatively investigate the effect of the third and

fourth level, we calculated the validation error achieved at

each network level. Training separate networks for each

component allows the third level network to improve the

performance by 14%. Performance gain is still obtained by

the fourth level in which rotation is rectified.

5.2. Comparison with other methods

Figure 6 is the result of our system in the 300 Faces in

the Wild Challenge. Our result is far better than the AAM-

based baseline. We also compared our performance on the

validation set with other systems. Since those detectors pro-

duced different sets of facial landmarks, we only show the

relative improvement on the common landmark points when

comparing with them. Table 3 lists the results. Our system

outperforms those public available or commercial landmark
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Figure 7. Some examples from the validation set. The data set contains great variations in pose and lightening condition, but our system

is still able to give good result.

system # points error ours improvement

Intraface1 37 0.046 0.029 37%

FACE++(1.0)2 3 0.075 0.029 61%

FACE++ 11 0.034 0.026 25%

Lambda Lab3 3 0.097 0.026 73%

Table 3. Comparison with other public systems on the valida-
tion set. The error values are average Euclidean distances nor-

malized by inter-ocular distance. Our system outperforms other

systems.

detection systems.

Figure 7 gives some examples taken from the validation

set. Our system is able to handle images that contain great

variation in pose and lightening condition. It can predict the

shape of the face even in the presence of occlusion. Despite

the success, chance for further improvement still exists, es-

pecially for the points on the eyebrow or face contour.

6. Conclusion
We propose a new automatic system for facial landmark

localization. In our method, four DCNN levels are care-

fully designed to form a coarse-to-fine network cascade. To

validate the effectiveness of our design, we show that our

system can achieve leading performance in the 300-W fa-

cial landmark localization challenge.
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