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Abstract

In this paper, we propose to combine local and global

features in a carefully designed convolutional neural net-

work for 3D face alignment. We firstly adopt a part heatmap

regression network to predict the landmark points on a lo-

cal granularity by generating a series of heatmaps for each

3D landmark point. To enhance the ability of local feature

representation, we incorporate the designed network with a

part attention module, which transfers the convolution op-

ereation into a channelwise attention opereation. Addition-

ally, we take all these heatmaps alongside the input image

as the input of another shape regression network in order

to model the feature representations from local discrete re-

gions to a global semantically continuous space. Exten-

sive experiments on challenging datasets, AFLW2000-3D,

300VW and the Menpo Benchmark, show the effectiveness

of both the global consistency and local description in our

model, and the proposed algorithm outperforms state-of-

the-art baselines.

1. Introduction

The main idea of face alignment is to regress a func-

tion that maps 2D face images to their corresponding land-

mark points. In the past few decades, extensive studies

[39, 40, 31, 11, 26, 41, 33, 43] have been proposed and

singnificant improvements have been achieved, especially

since a comprehensice benchmark [32] was made public,

and deep convolution neural networks [33, 43] were applied

in face shape regression. Benefiting from the increasing

number of training data and better feature representation

capacity, deep learning based approachs are proved to be

capable of handling with various conditions.

However, most of these prior works struggle when the

faces are confronted with large pose variations and partial

occlusions. Intuitively, global regression model captures

global spatial representations, while posture variation and

occlusions lead to local teature changes. Previous methods

usually combine the local and global representations with

manually designed frameworks, e.g., global model based

Figure 1. 3D face tracking results. The first row depicts the de-

tection results of the first apperance of faces which is normalized

with 81 2D landmark. Second row is the same image aligned with

84 3D landmark. Third row is the tracking results of the following

frame, and the last row is randomly selected from the correspond-

ing tracking sequences. Our tracking results perform well under

various illumination, expression, posture, occlusion and blurri-

ness.

on local features [39, 40, 31], or coarse-to-fine framework

from global regression to local ones [41, 43, 15, 20, 33].

Both the global consistency and multi-granularity represen-

tations are damaged in the model.

Different with the point definitions of 2D landmark,

3D landmark regression are more susceptible due to self-

occlusion of points under an arbitrary poseture. A larger

capacity model is needed to learn the local evidence of each

points with textureless image. Also a strategy to simultane-

ously model the local and global representations is essen-

tial. Inspired by this, this paper proposes a local-to-global

framework to predict the 3D landmark points by concen-

trating on subsequently local learning and global learning.

Our method builds upon the idea of part heatmap regres-
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sionfirstly. In order to learn a coherent understanding of

local regions, a modifed staked hourglass network is ad-

poted to generate a series of heatmaps for each 3D landmark

point. In the filed of human pose estimation, the architecture

[30] combining deep redusial network modules [17, 18] has

achieved huge success. Being extended for 3D landmark

alignment, it is capable of dealing with large pose varia-

tions and extreme expressions well, with sufficient capac-

ity and the strategy of multi-scale learning. Despite these

benefits, a part attention module applying a channelwise at-

tention opereation instead of the original convolution op-

ereation is integrated into the network, which effectively in-

crease the diversity of local representations. Although the

local heatmap model provides precise description of local

points, it lacks of spatial contextual information of different

regions. We employ another global regression network to

predict the final smooth 3D landmark taking both the input

image and all the heatmaps as input. All these networks

are trained end-to-end to model the feature representations

from local granularity to global consistent space, and erase

the noises of independent heatmaps.

Based on the proposed algorithm, we also provide a 3D

landmark tracking framework. Experiments on publicly

available datasets, together with the results of Menpo chal-

lenge competition, confirm the effectiveness of the present

method. As shown in Figure 1, our method performs well

in arbitrary poses, illumination and occlusions.

2. Related Work

In the domain of face alignment, shape regression is

the most straight-forward way to solve this landmark lo-

calization problem. In order to improve the location ac-

curacy, plenty of algorithms are carried out to model both

the global and local features. All these methods can be

divided into two categories. The first category follows a

global regression framework by extracting local features

[39, 40, 31, 11, 26]. Majority of such approaches adopt

the architecture cascading multiple weak regressors to ob-

tain better and better local feature descriptions. The other

category takes the Coarse-to-Fine framework to generate

global and locale regression results successively [41, 43,

15, 20, 33, 14, 42, 44, 9]. Although convolutional neu-

ral networks produce better feature representation capacity,

the performance of single stage network is still not good

enough. These two categories discuss the relationship be-

tween global and local respectively in terms of feature and

texture.

However, 3D face alignment, which aims to estimate 3d

landmark from a 2D image, has only a few related stud-

ies in 3D shape regression. A relevant but different prob-

lem is the 3D face reconstruction [19, 21, 5, 46, 4], where

3DMM [3] is the most effective method to generate dense

3D shape including the face posture and expression. By

employing convolution neural networks, [23, 45] propose

a similar framework iteratively updating the 3D fitting pa-

rameters by combining the cascaded CNN regressor method

with 3DMM. The method are used to enhance the perfor-

mance of 2D landmark regression on large-pose face im-

ages. As 3D landmark brings more posture information,

[24, 37] also adopt a 3D model as an auxiliary input to solve

2D alignment with large pose variations.

As we all know, what makes deep learning based shape

regression successful is massive training datasets. In view

of the lack of 3D shape training data, zhu et al. [45] sys-

nthetically generated a series of datasets based on 300W

[32], which gradually become the benchmark of 3D shape

regression methods. Based on these 3D shape datasets,

Adrian Bulat [7, 8] proposes a regression model to veri-

fiy the validity of part heatmap regression in 3D shape re-

gression. He discusses the relationship between 2D and

3D shape regression, and tries to generate a much Larger

3D facial landmark dataset by appliying a 2D guided net-

work which converts 2D landmark annotations to 3D. How-

ever, he only experimentally applies a single end-to-end net-

work based on local heatmaps. [6] describes a two-stage

network, which is similar with our proposed work. His

method predicts the first two axises of 3D landmark with

local heatmaps regression at first, then generats the depth of

landmark points taking both the heatmaps and the image as

input of a global regression network.

Unlike the scarce researchs in 3D shape regression, these

exists a great deal of works in human pose estimation.

There are many correspondences between these two re-

search topic. [30] designs a hourglass network. It is a sym-

metric topology consisting of the successive processions of

pooling and upsampling along with intermediate supervi-

sion, which enables the network to capture features from

different scales as well as global contextual information.

[12] increases model capacity by applying an self adversar-

ial module. [13] proposes a multi-context attention mech-

anism onto the modified hourglass network. The attention

module mainly consists of a multi-semantics attention ob-

tained by generating attention maps for each stack of the

hourglass, and a hierarchical coarse to fine attention scheme

to zoom from gloabel into local part regions for more pre-

cise localization. This paper further investigates the rela-

tionships of global and local features, with all these mod-

ifications carried out to encode the local appearance and

global representations. [29] discusses this problem from an-

other perspective by designed a network to learn the affine

transformation matrix between each local heatmaps. Both

of them achieve the state-of-the-art performance on the hu-

man pose estimation benchmarks.
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Figure 2. The proposed shape regression network. The preprocessing module downsamples the input image size from 256 to 64. Then four

staged hourglass networks are employed to extract local landmark heatmaps, followed by a fintune module to generate the final smooth

results. Also the details of the preprocessing and finetune modules are depicted here, where c k s p notes the channel num, kernel size,

stride and pad of each convolution opereationsuccessively. celoss and l2loss are cross entropy loss and L2 loss.

3. The Proposed Network

The proposed shape regression network is made up of

two main steps. The first part foucuses on estimating the

raw landmark locations by generating a series of regression

heatmaps, one for each landmark, in which, a local attention

mechanism is carried out from global to local heatmaps to

explore global context information combined with local ev-

idence. These two modules are described in section 3.1 and

3.2 separately. The second part, presented in section 3.3,

is aggregated to produce the final smooth 3D prediction. It

takes both the point heatmaps and the original input image

as input. These two networks are trained end-to-end to be-

come the core of 3D landmark tracking system. The overall

architecture of the proposed network is illustrated in Figure

2.

3.1. Heatmap Regression Network

The architecture of the heatmap regression network is

based on the houreglass model proposed in [30]. It intro-

duces an efficient way to capture and consolidate features

at different scales and resolutions with the skip route. The

structure of hourglass is a symmetric topology, consisting

of the successive steps of pooling and upsampling. With

downsampling operation, it increases receptive field to al-

low smaller spatial filters to compare features across the en-

tire space of the image. With upsampling operation, it acts

on local information to identify each semantic landmark in

a human face. Residual modules [17] is employed between

two downsampling operations.

As employed, the network was adapted by: (1) chang-

ing the convolution opereation after hourglass module with

a residual module, (2) replaceing the original nearest neigh-

bour upsampling by learnable deconvolution layers, (3) re-

placing the residual module [17] to the Identity version in

[18], (4) removing the dropout module, and (5) adopting

the pixel wise sigmoid cross entropy loss function instead

Figure 3. Single heatmap regression module. Two convolution

operation and an attention module are adopted to generate the

heatmaps and the input of following regression module.

of L2 loss function. All these changes result in a slignt

boost to the final performance. The first three amendments

enrich the information received by the output of each build-

ing block, and makes the whole framework more robust to

scale change. Dropout has been proved by experiment that

it leads to performance degradation without enhancing gen-

eralization quality. And cross entropy loss is more appro-

priate then L2 loss in the gaussian distribution of heatmaps.

Based on the modified hourglass module, Figure 3 depicts

the structure of single heatmap regression module.

Empirically, we decode each landmark as a heatmap us-

ing 2D Gaussian with radius=5 pixels centered at pixel lo-

cation of that landmark. Each heatmap has a resolution of

64 × 64 to reduce the GPU memory consumption in train-

ing. However, the input RGB image is aligned with the

given landmarks and cropped with size 256× 256 to locate

the face at the centre of the image. Then the full network

starts with 3x3 convolution layer with stride 2, followed by

a residual module and a max pooling to bring the resolution

down from 256 to 64. Two subsequent residual modules are

employed before the hourglass, and four stages hourglass

networks are stacked in our algorithm.

3.2. Local Attention Module

Since the visual attention model is computationally ef-

ficient and is effective in understanding images, it has
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Figure 4. Differnet heatmap modules. the first row is the traditional

network, The second row is the method

achieved great success in image classification [38, 16, 2,

36], saliency detection [27], human pose estimation [13].

The traditional soft attention mechanism can be defined as

follows:

y = f(W ∗ x+ b) (1)

where ∗ denotes convolution, W and b denote the convo-

lution filters and bias. f is the nonlinear activation function,

where sigmoid is usually applied to normalize the attention

map. y is the final attention map that summarizes informa-

tion of all channels in x, and projects into C × H × W

space. In [36], a squeeze operation is employed to squeeze

the y into C×1×1, which greatly improve the performance

of image classification. However, we find out that 1×1 con-

volution operation performs better by generating 1×H×W

attention map.

h = y ⊙ x (2)

Then, a channel-wise matrix product operation ⊙ on the

input feature x and the attention map y is applied to generate

the refined feature map h, which has the same size with x,

and refines the feature x.

In our paper, we adopte a local attention scheme to gen-

erate reweighted heatmaps. As shown in Figure 4 (module

4), an attemtion module is applied firstly to generate the

global heatmap.

hglobal = yglobal ⊙ x (3)

Then, the global heatmap hglobal is used as an input

of N local attention modules to generate a series of local

heatmaps. one module for each landmark.

hi = yi ⊙ hglobal (4)

All these reweighted features are concatenated as the

final landmark heatmaps. Different from the traditional

N ×H ×W convolution operation, the proposed attention

scheme strengthens the feature response of each point, and

increases the local neighboring spatial correlations.

Figure 5. Finetune regression Module.

3.3. Finetune Regression Module

The finetune network is depicted in Figure 5. The in-

put of this module is the staged heatmaps alongside the

input RGB image. A simplified VGG-like[34] module is

carried out here followed by two full-connection layers to

produce N × 2 output. L2 loss is applied here to mini-

mize the normalized euclidean distance between the ground

truth landmarks and the prediction results. To simultane-

ously model the global and local features, both the heatmap

regression network and the finetune regression network are

trained end-to-end.

3.4. 3D Landmark Tracking Framework

Based on the proposed shape regression network, we

carry out a 3D landmark tracking system to evaluate the test

videos provided by Menpo challenge competitions, as de-

picted in Figure 6. ’face++ API’ [1] is employed to detect

the face inside a given image. When applied on a video, it

proceeds on each frame to generate all candidate face rects

and their corresponding 81 2D points above a appropriate

threshold. We manually check the detected faces and find 0

false detection in the test videos.

Two models are trained for different initializations.

Model 1 is learned from the cropped training set by align-

ing 2D landmarks (81 points) to the meanshape of given

3D landmarks (84 points). In model 2, images are directlly

aligned to the 3D landmark meanshape, and randomly al-

tered by slight similarity transformation (rotating, translat-

ing and scaling) before feeding into the network to deal with

the face texture variation between two adjacent frames.

4. Experiments

Given that this work focuses on 3D face landmark track-

ing, we test our proposed method on static images and land-

mark tracking on videos separately. Six publicly available

datasets are used. Also the performance of our system on

Menpo challenge competition [] is present.

4.1. Evaluations on benchmarks

This section evaluates the present two stage shape re-

gression algorithm on static face images, where the ground

truth landmarks are applied for face alignment to generate a

aligned face image as the input of networks, and the predic-

tion 3D landmarks are generated for evaluation. To compare
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Figure 6. The proposed 3D face tracking framework.

with the state-of-the-art methods, two well-konwn bench-

mark datasets (300W-LP and AFLW2000-3D) are used for

training and evaluations. Images in both of them provide 68

points landmark annotations.

300W-LP: 300W-LP(300W across Large Poses) [45]

contains 61225 samples (1786 from IBUG, 5207 from

AFW, and 16556 from LFPW) sysnthetical generated from

300-W [32]. Zhu et al. [45] carries out a 3D Dense Face

Alignment(3DDFA) algorithm to fit the image into a dense

3D face model to render the faces into larger poses ranging

from −90o to 90o. The dataset contains large-pose varia-

tions, with various expressions and illumination conditions.

The 3D landmark annotations 300W-LP-3D is taking as the

training set to bring into correspondence with Zhu’s original

experiment.

AFLW2000-3D: AFLW2000-3D is the most commonly

used testset for 3D face alignment in-the-wild. It is also

specifically contructed by Zhu et al. from the first 2000

AFLW smaples [28]. AFLW2000-3D is suitable for evalu-

ating face alignment performance across large poses.

Following most previous works, we evaluate the align-

ment accuracy using the standard Normalized Mean Error.

As noted in [45], error metric normalized by the inter-pupil

distance leads to serious bias for which the interocular dis-

tance varies a lot under different face posture, hence the rel-

atively stable face size is adopted as normalization factor.

In particular, the Normalized Mean Error is defined as:

NME =
1

N

N∑

n=1

‖sg − sp‖2√
w ∗ h

(5)

where Sg and Sp denote the ground truth landmarks and

the corresponding prediction separately, w and b are the

bounding box shape calculated from the ground truth 3D

landmarks.

Evaluations on heatmap module We separately evalu-

ate all of our proposed modules. Firstly, we try to inversti-

gate the capacity of heatmap regression and systematically

evaluate the performance of each modification. Resnet18 is

employed as the baseline of shape regression model. Table

1 reports the NME-based comparisons of all 68 3D points

on AFLW2000-3D. As it can be observed, the performance

of heatmap regression is far better then shape regression

with NME decreased from 0.0371 tp 0.0338. All the mod-

ifications described above result in performance improve-

Method NME

Resnet18 [17] 0.0371

Hourglass [30] 0.0338

+ residual unit modified 3.1 (1,2,3) 0.0332

+ cross entropy loss 3.1 (5) 0.0307

Table 1. NME comparisons of modifications in heatmap regression

and fc regression on AFLW2000-3D.

Method NME

+ 3.2 module 1 0.0307

+ 3.2 module 2 0.0364

+ 3.2 module 3 0.0300

+ 3.2 module 4 0.0296

Table 2. NME comparisons of different types of heatmap genera-

tion on AFLW2000-3D.

ments step by step, except the finetune module leads to a

slight decrease. Cross entropy loss is the most effective one.

Based on these modules, NME of AFLW2000-3D reduced

about 13% from the originial hourglass based heatmap re-

gression algorithm.

Evaluations on attention module Attention scheme is

one of the most important module to explore local repre-

sentations from global context information. We apply four

different types of heatmap generation methods based on the

modified heatmap regression network to prove the effective-

ness of the present attention module 4 . Module 1 is the

original 1× 1 convolutional network. In Module 2, sereval

affine transformation matrixs are learned between the lo-

cal heatmap of adjacent points to adjust heatmaps based on

points correlations. Difference between Module 3 and Mod-

ule 4 are whether to apply attention on global heatmaps.

As shown in 2, more attention leads to better performance.

While applyed on both the global heatmap and the local

heatmap, attention scheme enhances the ability of local fea-

ture representation accompanied by the global context in-

formation. However, module 2 results in significant dete-

rioration, that is because transformation between adjacent

points leads to the unreasonable distribution and brought

noises to point locations.

Evaluations on finetune module Also we evaluate the

performance of fintune shape regression network. Evalu-

ated on AFLW2000-3D, the NME has a slight drop on the

performance from 0.0296 to 0.0304. As there exists ex-

aggerated expressions, occlusions, and posture, too smooth

landmarks results in lower accuray. However, NME of the

videoset is remarkable descrease.

Comparisons with other methods The proposed results

are compared with other state-of-the-art performances in 3.

3DDFA [45] is applied as a baseline on AFLW2000-3D.

we recomplement another heatmap regression method [7]
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Method NME

PCPR [10] 0.0780

ESR [11] 0.0799

SDM [39] 0.0612

3SDFA [45] 0.0542

3DDFA+SDM [45] 0.0494

binary version [7] 0.0326

real-valued version [7] 0.0331

proposed 0.0296

Table 3. NME comparisons of out proposed modules and other

state-of-the-art methods on AFLW2000-3D. The results for

RCPR, ESR and SDM are taken from [45].

in real-valued version. However, it exists a slight drop on

the performance. While both of these two methods are im-

plemented with similar architecture, there is only small per-

formance differences as listed in Table ??. It also proves the

capacity of local heatmap regression network.

4.2. Results of Menpo Benchmark Competion

Furthermore, we evaluate the proposed tracking frame-

work to analysis the performance on videos. Two datasets

are provided by Menpo organizer. In which, 300VW [25]

includes 50 high resolution video sequences with moder-

ate expression, head pose, and illumination changes. 3D

facial landmark annotations are provided with the semi-

automatic annotation process [35]. We randomly divide the

dataset into training and testset. All frames of 12 persons

are selected as testset, and the remaining as training dataset.

However, the given dataset only contains sparse frames se-

lected from the raw videos instead of a complete video.

To simulate the evaluation standard of Menpo Benchmark

Competion, we employ a linear interpolation method to

generate continous video frames from the image testset to

build a video testset.

The other dataset is about static images. Images from

AFLW [28], FDDB[22], 300W, 300W-Test [32] are col-

lected and fitted with 3D facial morphable model [4] to gen-

erate 84 3D point annotations. The parameters of the model

have been carefully selected and all fittings have been visu-

ally inspected. Also the final landmarks have been manu-

ally corrected. This dataset is combined with the selected

300VW training set as the final training dataset with about

30000 video frames and 12000 images in-the-wild.

We focus on discuss the two-stage network performance

on the videoset. NME results are listed in 4. After finetun-

ing, NME is reduce from 0.054 to 0.043. Different from the

static imageset, two stage strategy results in performance

promotion. This problem may be caused by overfitting.

In our experiments, we find all these models are sensitive

to the landmark initialization, while all the initialization of

static images are ground truth. Under a more complicated

Method NME

attention based hourglass 3.1,3.2 0.054

+ finetune module 3.3 0.043

Table 4. NME comparisons of two stage results of videoset.

Figure 7. Evaluation on the test sets of Menpo challenge competi-

tion benchmark.

situation, two stage network can fully explore both the part

details and global context information to some extent. How-

ever, it still leads to a huge err increase compared with the

evaluation results of static images, although two aligned

strategies are employed in the framework. Further research

is required.

The results of the same tracking system are submitted to

1st 3D Face Tracking in-the-wild Competition. The track-

ing results has been evaluated independently by the orga-

nizer using their own ground truth and own evaluation met-

ric. The returned results are illustrate in Figure 7.

5. Conclusion

In this paper, we have presented a novel two-stage 3D

landmark regression network which shows strong robust-

ness and high accuracy for face images in-the-wild. An

attention-based heatmap regression network followed by

another shape regression network is developed to discuss

the relationship representations between global and local

features in shape regression. We hope this will be help-

ful for other regression methods. Also attention mechanism

is proved to be helpful in several tasks. Future work will

concentrate on exploring more expressive feature represen-

tations to further improve the accuracy and robustness of

the proposed model, and accelerating it for real time face

landmark tracking.
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