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Abstract. Recently, models based on deep neural networks have dom-
inated the fields of scene text detection and recognition. In this paper,
we investigate the problem of scene text spotting, which aims at simul-
taneous text detection and recognition in natural images. An end-to-end
trainable neural network model for scene text spotting is proposed. The
proposed model, named as Mask TextSpotter, is inspired by the newly
published work Mask R-CNN. Different from previous methods that also
accomplish text spotting with end-to-end trainable deep neural networks,
Mask TextSpotter takes advantage of simple and smooth end-to-end
learning procedure, in which precise text detection and recognition are
acquired via semantic segmentation. Moreover, it is superior to previ-
ous methods in handling text instances of irregular shapes, for example,
curved text. Experiments on ICDAR2013, ICDAR2015 and Total-Text
demonstrate that the proposed method achieves state-of-the-art results
in both scene text detection and end-to-end text recognition tasks.
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1 Introduction

In recent years, scene text detection and recognition have attracted growing re-
search interests from the computer vision community, especially after the revival
of neural networks and growth of image datasets. Scene text detection and recog-
nition provide an automatic, rapid approach to access the textual information
embodied in natural scenes, benefiting a variety of real-world applications, such
as geo-location [58], instant translation, and assistance for the blind.

Scene text spotting, which aims at concurrently localizing and recognizing
text from natural scenes, have been previously studied in numerous works [49,
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21]. However, in most works, except [27] and [3], text detection and subsequent
recognition are handled separately. Text regions are first hunted from the original
image by a trained detector and then fed into a recognition module. This pro-
cedure seems simple and natural, but might lead to sub-optimal performances
for both detection and recognition, since these two tasks are highly correlated
and complementary. On one hand, the quality of detections larges determines
the accuracy of recognition; on the other hand, the results of recognition can
provide feedback to help reject false positives in the phase of detection.

Recently, two methods [27, 3] that devise end-to-end trainable frameworks
for scene text spotting have been proposed. Benefiting from the complementarity
between detection and recognition, these unified models significantly outperform
previous competitors. However, there are two major drawbacks in [27] and [3].
First, both of them can not be completely trained in an end-to-end manner.
[27] applied a curriculum learning paradigm [1] in the training period, where the
sub-network for text recognition is locked at the early iterations and the training
data for each period is carefully selected. Busta et al. [3] at first pre-train the
networks for detection and recognition separately and then jointly train them
until convergence. There are mainly two reasons that stop [27] and [3] from
training the models in a smooth, end-to-end fashion. One is that the text recog-
nition part requires accurate locations for training while the locations in the
early iterations are usually inaccurate.The other is that the adopted LSTM [17]
or CTC loss [11] are difficult to optimize than general CNNs. The second limi-
tation of [27] and [3] lies in that these methods only focus on reading horizontal
or oriented text. However, the shapes of text instances in real-world scenarios
may vary significantly, from horizontal or oriented, to curved forms.

In this paper, we propose a text spotter named as Mask TextSpotter, which
can detect and recognize text instances of arbitrary shapes. Here, arbitrary
shapes mean various forms text instances in real world. Inspired by Mask R-
CNN [13], which can generate shape masks of objects, we detect text by segment
the instance text regions. Thus our detector is able to detect text of arbitrary
shapes. Besides, different from the previous sequence-based recognition methods
[45, 44, 26] which are designed for 1-D sequence, we recognize text via semantic

petrosainsproekng astrosains

Fig. 1: Illustrations of different text spotting methods. The left presents horizon-
tal text spotting methods [30, 27]; The middle indicates oriented text spotting
methods [3]; The right is our proposed method. Green bounding box: detection
result; Red text in green background: recognition result.
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segmentation in 2-D space, to solve the issues in reading irregular text instances.
Another advantage is that it does not require accurate locations for recognition.
Therefore, the detection task and recognition task can be completely trained
end-to-end, and benefited from feature sharing and joint optimization.

We validate the effectiveness of our model on the datasets that include hor-
izontal, oriented and curved text. The results demonstrate the advantages of
the proposed algorithm in both text detection and end-to-end text recognition
tasks. Specially, on ICDAR2015, evaluated at a single scale, our method achieves
an F-Measure of 0.86 on the detection task and outperforms the previous top
performers by 13.2%− 25.3% on the end-to-end recognition task.

The main contributions of this paper are four-fold. (1) We propose an end-
to-end trainable model for text spotting, which enjoys a simple, smooth train-
ing scheme. (2) The proposed method can detect and recognize text of vari-
ous shapes, including horizontal, oriented, and curved text. (3) In contrast to
previous methods, precise text detection and recognition in our method are ac-
complished via semantic segmentation. (4) Our method achieves state-of-the-art
performances in both text detection and text spotting on various benchmarks.

2 Related Work

2.1 Scene Text Detection

In scene text recognition systems, text detection plays an important role [59].
A large number of methods have been proposed to detect scene text [7, 36, 37,
50, 19, 23, 54, 21, 47, 54, 56, 30, 52, 55, 34, 15, 48, 43, 57, 16, 35, 31]. In [21],
Jaderberg et al. use Edge Boxes [60] to generate proposals and refine candidate
boxes by regression. Zhang et al. [54] detect scene text by exploiting the sym-
metry property of text. Adapted from Faster R-CNN [40] and SSD [33] with
well-designed modifications, [56, 30] are proposed to detect horizontal words.

Multi-oriented scene text detection has become a hot topic recently. Yao et
al. [52] and Zhang et al. [55] detect multi-oriented scene text by semantic seg-
mentation. Tian et al. [48] and Shi et al. [43] propose methods which first detect
text segments and then link them into text instances by spatial relationship or
link predictions. Zhou et al. [57] and He et al. [16] regress text boxes directly
from dense segmentation maps. Lyu et al. [35] propose to detect and group the
corner points of the text to generate text boxes. Rotation-sensitive regression
for oriented scene text detection is proposed by Liao et al. [31].

Compared to the popularity of horizontal or multi-oriented scene text detec-
tion, there are few works focusing on text instances of arbitrary shapes. Recently,
detection of text with arbitrary shapes has gradually drawn the attention of re-
searchers due to the application requirements in the real-life scenario. In [41],
Risnumawan et al. propose a system for arbitrary text detection based on text
symmetry properties. In [4], a dataset which focuses on curve orientation text
detection is proposed. Different from most of the above-mentioned methods, we
propose to detect scene text by instance segmentation which can detect text
with arbitrary shapes.
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2.2 Scene Text Recognition

Scene text recognition [53, 46] aims at decoding the detected or cropped image
regions into character sequences. The previous scene text recognition approaches
can be roughly split into three branches: character-based methods, word-based
methods, and sequence-based methods. The character-based recognition meth-
ods [2, 22] mostly first localize individual characters and then recognize and
group them into words. In [20], Jaderberg et al. propose a word-based method
which treats text recognition as a common English words (90k) classification
problem. Sequence-based methods solve text recognition as a sequence labeling
problem. In [44], Shi et al. use CNN and RNN to model image features and
output the recognized sequences with CTC [11]. In [26, 45], Lee et al. and Shi
et al. recognize scene text via attention based sequence-to-sequence model.

The proposed text recognition component in our framework can be classified
as a character-based method. However, in contrast to previous character-based
approaches, we use an FCN [42] to localize and classify characters simultaneously.
Besides, compared with sequence-based methods which are designed for a 1-D
sequence, our method is more suitable to handle irregular text (multi-oriented
text, curved text et al.).

2.3 Scene Text Spotting

Most of the previous text spotting methods [21, 30, 12, 29] split the spotting
process into two stages. They first use a scene text detector [21, 30, 29] to localize
text instances and then use a text recognizer [20, 44] to obtain the recognized
text. In [27, 3], Li et al. and Busta et al. propose end-to-end methods to localize
and recognize text in a unified network, but require relatively complex training
procedures. Compared with these methods, our proposed text spotter can not
only be trained end-to-end completely, but also has the ability to detect and
recognize arbitrary-shape (horizontal, oriented, and curved) scene text.

2.4 General Object Detection and Semantic Segmentation

With the rise of deep learning, general object detection and semantic segmenta-
tion have achieved great development. A large number of object detection and
segmentation methods [9, 8, 40, 6, 32, 33, 39, 42, 5, 28, 13] have been pro-
posed. Benefited from those methods, scene text detection and recognition have
achieved obvious progress in the past few years. Our method is also inspired
by those methods. Specifically, our method is adapted from a general object in-
stance segmentation model Mask R-CNN [13]. However, there are key differences
between the mask branch of our method and that in Mask R-CNN. Our mask
branch can not only segment text regions but also predict character probabil-
ity maps, which means that our method can be used to recognize the instance
sequence inside character maps rather than predicting an object mask only.
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3 Methodology

The proposed method is an end-to-end trainable text spotter, which can handle
various shapes of text. It consists of an instance-segmentation based text detector
and a character-segmentation based text recognizer.

3.1 Framework

The overall architecture of our proposed method is presented in Fig. 2. Func-
tionally, the framework consists of four components: a feature pyramid network
(FPN) [32] as backbone, a region proposal network (RPN) [40] for generating
text proposals, a Fast R-CNN [40] for bounding boxes regression, a mask branch
for text instance segmentation and character segmentation. In the training phase,
a lot of text proposals are first generated by RPN, and then the RoI features of
the proposals are fed into the Fast R-CNN branch and the mask branch to gen-
erate the accurate text candidate boxes, the text instance segmentation maps,
and the character segmentation maps.
Backbone Text in nature images are various in sizes. In order to build high-level
semantic feature maps at all scales, we apply a feature pyramid structure [32]
backbone with ResNet [14] of depth 50. FPN uses a top-down architecture to
fuse the feature of different resolutions from a single-scale input, which improves
accuracy with marginal cost.
RPN RPN is used to generate text proposals for the subsequent Fast R-CNN
and mask branch. Following [32], we assign anchors on different stages de-
pending on the anchor size. Specifically, the area of the anchors are set to
{322, 642, 1282, 2562, 5122} pixels on five stages {P2, P3, P4, P5, P6} respectively.
Different aspect ratios {0.5, 1, 2} are also adopted in each stages as in [40]. In this
way, the RPN can handle text of various sizes and aspect ratios. RoI Align [13] is
adapted to extract the region features of the proposals. Compared to RoI Pool-
ing [8], RoI Align preserves more accurate location information, which is quite
beneficial to the segmentation task in the mask branch. Note that no special
design for text is adopted, such as the special aspect ratios or orientations of
anchors for text, as in previous works [30, 15, 34].
Fast R-CNN The Fast R-CNN branch includes a classification task and a
regression task. The main function of this branch is to provide more accurate

Box Classification

Box Regression

RoI Align

Word segmentation

Character instance segmentationRPN

Fast R-CNN

Mask branch

Fig. 2: Illustration of the architecture of the our method.



6 Pengyuan Lyu, Minghui Liao, Cong Yao, Wenhao Wu, Xiang Bai

bounding boxes for detection. The inputs of Fast R-CNN are in 7×7 resolution,
which are generated by RoI Align from the proposals produced by RPN.
Mask Branch There are two tasks in the mask branch, including a global
text instance segmentation task and a character segmentation task. As shown
in Fig. 3, giving an input RoI, whose size is fixed to 16 ∗ 64, through four convo-
lutional layers and a de-convolutional layer, the mask branch predicts 38 maps
(with 32 ∗ 128 size), including a global text instance map, 36 character maps,
and a background map of characters. The global text instance map can give ac-
curate localization of a text region, regardless of the shape of the text instance.
The character maps are maps of 36 characters, including 26 letters and 10 Ara-
bic numerals. The background map of characters, which excludes the character
regions, is also needed for post-processing.

3.2 Label Generation

For a training sample with the input image I and the corresponding ground
truth, we generate targets for RPN, Fast R-CNN and mask branch. Generally,
the ground truth contains P = {p1, p2...pm} and C = {c1 = (cc1, cl1), c2 =
(cc2, cl2), ..., cn = (ccn, cln)}, where pi is a polygon which represents the local-
ization of a text region, ccj and clj are the category and location of a character
respectively. Note that, in our method C is not necessary for all training samples.

We first transform the polygons into horizontal rectangles which cover the
polygons with minimal areas. And then we generate targets for RPN and Fast
R-CNN following [8, 40, 32]. There are two types of target maps to be generated
for the mask branch with the ground truth P , C (may not exist) as well as the
proposals yielded by RPN: a global map for text instance segmentation and a
character map for character semantic segmentation. Given a positive proposal
r, we first use the matching mechanism of [8, 40, 32] to obtain the best matched
horizontal rectangle. The corresponding polygon as well as characters (if any)
can be obtained further. Next, the matched polygon and character boxes are
shifted and resized to align the proposal and the target map of H ×W as the
following formulas:

RoI

16*64*256 32*128*25616*64*256 16*64*256 16*64*256

…
…

0

1

A

Z

…
…

Global word map

Character maps

Background map

32*128

Fig. 3: Illustration of the mask branch. Subsequently, there are four convolutional
layers, one de-convolutional layer, and a final convolutional layer which predicts
maps of 38 channels (1 for global text instance map; 36 for character maps; 1
for background map of characters).
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Bx = (Bx0
−min(rx))×W/(max(rx)−min(rx)) (1)

By = (By0
−min(ry))×H/(max(ry)−min(ry)) (2)

where (Bx, By) and (Bx0 , By0) are the updated and original vertexes of the
polygon and all character boxes; (rx, ry) are the vertexes of the proposal r.

After that, the target global map can be generated by just drawing the
normalized polygon on a zero-initialized mask and filling the polygon region
with the value 1. The character map generation is visualized in Fig. 4a. We first
shrink all character bounding boxes by fixing their center point and shortening
the sides to the fourth of the original sides. Then, the values of the pixels in the
shrunk character bounding boxes are set to their corresponding category indices
and those outside the shrunk character bounding boxes are set to 0. If there are
no character bounding boxes annotations, all values are set to −1.

3.3 Optimization

As discussed in Sec. 3.1, our model includes multiple tasks. We naturally define
a multi-task loss function:

L = Lrpn + α1Lrcnn + α2Lmask, (3)

where Lrpn and Lrcnn are the loss functions of RPN and Fast R-CNN, which
are identical as these in [40] and [8]. The mask loss Lmask consists of a global
text instance segmentation loss Lglobal and a character segmentation loss Lchar:

Lmask = Lglobal + βLchar, (4)

where Lglobal is an average binary cross-entropy loss and Lchar is a weighted
spatial soft-max loss. In this work, the α1, α2, β, are empirically set to 1.0.

B

A
L

L
Y

S

(a)

…
…

Background map

0
1

A

Z

…
…

Character maps
Pooling &
Average

1.0

0

0

…
…

(b)

Fig. 4: (a) Label generation of mask branch. Left: the blue box is a proposal
yielded by RPN, the red polygon and yellow boxes are ground truth polygon
and character boxes, the green box is the horizontal rectangle which covers the
polygon with minimal area. Right: the global map (top) and the character map
(bottom). (b) Overview of the pixel voting algorithm. Left: the predicted char-
acter maps; right: for each connected regions, we calculate the scores for each
character by averaging the probability values in the corresponding region.
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Text instance segmentation loss The output of the text instance segmenta-
tion task is a single map. Let N be the number of pixels in the global map, yn
be the pixel label (yn ∈ 0, 1), and xn be the output pixel, we define the Lglobal

as follows:

Lglobal = − 1

N

N∑
n=1

[yn × log(S(xn)) + (1− yn)× log(1− S(xn))] (5)

where S(x) is a sigmoid function.

Character segmentation loss The output of the character segmentation con-
sists of 37 maps, which correspond to 37 classes (36 classes of characters and the
background class). Let T be the number of classes, N be the number of pixels in
each map. The output maps X can be viewed as an N × T matrix. In this way,
the weighted spatial soft-max loss can be defined as follows:

Lchar = − 1

N

N∑
n=1

Wn

T−1∑
t=0

Yn,tlog(
eXn,t∑T−1

k=0 e
Xn,k

), (6)

where Y is the corresponding ground truth of X. The weight W is used to
balance the loss value of the positives (character classes) and the background
class. Let the number of the background pixels be Nneg, and the background
class index be 0, the weights can be calculated as:

Wi =

{
1 if Yi,0 = 1,

Nneg/(N −Nneg) otherwise
(7)

Note that in inference, a sigmoid function and a soft-max function are applied
to generate the global map and the character segmentation maps respectively.

3.4 Inference

Different from the training process where the input RoIs of mask branch come
from RPN, in the inference phase, we use the outputs of Fast R-CNN as proposals
to generate the predicted global maps and character maps, since the Fast R-CNN
outputs are more accurate.

Specially, the processes of inference are as follows: first, inputting a test
image, we obtain the outputs of Fast R-CNN as [40] and filter out the redundant
candidate boxes by NMS; and then, the kept proposals are fed into the mask
branch to generate the global maps and the character maps; finally the predicted
polygons can be obtained directly by calculating the contours of text regions on
global maps, the character sequences can be generated by our proposed pixel
voting algorithm on character maps.
Pixel Voting We decode the predicted character maps into character sequences
by our proposed pixel voting algorithm. We first binarize the background map,
where the values are from 0 to 255, with a threshold of 192. Then we obtain
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all character regions according to connected regions in the binarized map. We
calculate the mean values of each region for all character maps. The values can
be seen as the character classes probability of the region. The character class
with the largest mean value will be assigned to the region. After that, we group
all the characters from left to right according to the writing habit of English.
Weighted Edit Distance Edit distance can be used to find the best-matched
word of a predicted sequence with a given lexicon. However, there may be mul-
tiple words matched with the minimal edit distance at the same time, and the
algorithm can not decide which one is the best. The main reason for the above-
mentioned issue is that all operations (delete, insert, replace) in the original edit
distance algorithm have the same costs, which does not make sense actually.

Inspired by [51], we propose a weighted edit distance algorithm. As shown
in Fig. 5, different from edit distance, which assign the same cost for different
operations, the costs of our proposed weighted edit distance depend on the char-
acter probability pcindex which yielded by the pixel voting. Mathematically, the
weighted edit distance between two strings a and b, whose length are |a| and |b|
respectively, can be described as Da,b(|a|, |b|), where

Da,b(i, j) =


max(i, j) if min(i, j) = 0,

min


Da,b(i− 1, j) + Cd

Da,b(i, j − 1) + Ci

Da,b(i− 1, j − 1) + Cr × 1(ai 6=bj)

otherwise.

(8)
where 1(ai 6=bj) is the indicator function equal to 0 when ai = bj and equal to 1
otherwise; Da,b(i, j) is the distance between the first i characters of a and the
first j characters of b; Cd, Ci, and Cr are the deletion, insert, and replace cost
respectively. In contrast, these costs are set to 1 in the standard edit distance.

4 Experiments

To validate the effectiveness of the proposed method, we conduct experiments
and compare with other state-of-the-art methods on three public datasets: a
horizontal text set ICDAR2013 [25], an oriented text set ICDAR2015 [24] and a
curved text set Total-Text [4].

delete:  abcd -> abc      cost:1 

insert:  abd  -> abcd     cost:1 

replace: abc  -> abd      cost:1 

delete:  abcd -> abc      cost: 

insert:  abd  -> abcd     cost: 

replace: abc  -> abd      cost: 

''
4
dp

2/)( ''
4

''
2

db pp 

)0,/1max( ''
3

''
3

cd pp

(a) edit distance (b) weighted edit distance

Fig. 5: Illustration of the edit distance and our proposed weighted edit distance.
The red characters are the characters will be deleted, inserted and replaced.
Green characters mean the candidate characters. pcindex is the character proba-
bility, index is the character index and c is the current character.
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4.1 Datasets

SynthText is a synthetic dataset proposed by [12], including about 800000 im-
ages. Most of the text instances in this dataset are multi-oriented and annotated
with word and character-level rotated bounding boxes, as well as text sequences.
ICDAR2013 is a dataset proposed in Challenge 2 of the ICDAR 2013 Robust
Reading Competition [25] which focuses on the horizontal text detection and
recognition in natural images. There are 229 images in the training set and 233
images in the test set. Besides, the bounding box and the transcription are also
provided for each word-level and character-level text instance.
ICDAR2015 is proposed in Challenge 4 of the ICDAR 2015 Robust Reading
Competition [24]. Compared to ICDAR2013 which focuses on “focused text”
in particular scenario, ICDAR2015 is more concerned with the incidental scene
text detection and recognition. It contains 1000 training samples and 500 test
images. All training images are annotated with word-level quadrangles as well as
corresponding transcriptions. Note that, only localization annotations of words
are used in our training stage.
Total-Text is a comprehensive scene text dataset proposed by [4]. Except for
the horizontal text and oriented text, Total-Text also consists of a lot of curved
text. Total-Text contains 1255 training images and 300 test images. All images
are annotated with polygons and transcriptions in word-level. Note that, we only
use the localization annotations in the training phase.

4.2 Implementation details

Training Different from previous text spotting methods which use two inde-
pendent models [22, 30] (the detector and the recognizer) or alternating training
strategy [27], all subnets of our model can be trained synchronously and end-to-
end. The whole training process contains two stages: pre-trained on SynthText
and fine-tuned on the real-world data.

In the pre-training stage, we set the mini-batch to 8, and all the shorter edge
of the input images are resized to 800 pixels while keeping the aspect ratio of
the images. The batch sizes of RPN and Fast R-CNN are set to 256 and 512 per
image with a 1 : 3 sample ratio of positives to negatives. The batch size of the
mask branch is 16. In the fine-tuning stage, data augmentation and multi-scale
training technology are applied due to the lack of real samples. Specifically, for
data augmentation, we randomly rotate the input pictures in a certain angle
range of [−15◦, 15◦]. Some other augmentation tricks, such as modifying the
hue, brightness, contrast randomly, are also used following [33]. For multi-scale
training, the shorter sides of the input images are randomly resized to three
scales (600, 800, 1000). Besides, following [27], extra 1162 images for character
detection from [56] are also used as training samples. The mini-batch of images
is kept to 8, and in each mini-batch, the sample ratio of different datasets is set
to 4 : 1 : 1 : 1 : 1 for SynthText, ICDAR2013, ICDAR2015, Total-Text and the
extra images respectively. The batch sizes of RPN and Fast R-CNN are kept as
the pre-training stage, and that of the mask branch is set to 64 when fine-tuning.
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We optimize our model using SGD with a weight decay of 0.0001 and mo-
mentum of 0.9. In the pre-training stage, we train our model for 170k iterations,
with an initial learning rate of 0.005. Then the learning rate is decayed to a tenth
at the 120k iteration. In the fine-tuning stage, the initial learning rate is set to
0.001, and then be decreased to 0.0001 at the 40k iteration. The fine-tuning
process is terminated at the 80k iteration.

Inference In the inference stage, the scales of the input images depend on
different datasets. After NMS, 1000 proposals are fed into Fast R-CNN. False
alarms and redundant candidate boxes are filtered out by Fast R-CNN and NMS
respectively. The kept candidate boxes are input to the mask branch to generate
the global text instance maps and the character maps. Finally, the text instance
bounding boxes and sequences are generated from the predicted maps.

We implement our method in Caffe2 and conduct all experiments on a regular
workstation with Nvidia Titan Xp GPUs. The model is trained in parallel and
evaluated on a single GPU.

4.3 Horizontal text

We evaluate our model on ICDAR2013 dataset to verify its effectiveness in de-
tecting and recognizing horizontal text. We resize the shorter sides of all input
images to 1000 and evaluate the results on-line.

The results of our model are listed and compared with other state-of-the-art
methods in Table 1 and Table 3. As shown, our method achieves state-of-the-art
results among detection, word spotting and end-to-end recognition. Specifically,
for detection, though evaluated at a single scale, our method outperforms some
previous methods which are evaluated at multi-scale setting [18, 16] (F-Measure:
91.7% v.s. 90.3%); for word spotting, our method is comparable to the previ-
ous best method; for end-to-end recognition, despite amazing results have been
achieved by [30, 27], our method is still beyond them by 1.1%− 1.9%.

4.4 Oriented text

We verify the superiority of our method in detecting and recognizing oriented
text by conducting experiments on ICDAR2015. We input the images with three
different scales: the original scale (720×1280) and two larger scales where shorter
sides of the input images are 1000 and 1600 due to a lot of small text instance in
ICDAR2015. We evaluate our method on-line and compare it with other meth-
ods in Table 2 and Table 3. Our method outperforms the previous methods by
a large margin both in detection and recognition. For detection, when evaluated
at the original scale, our method achieves the F-Measure of 84%, higher than the
current best one [16] by 3.0%, which evaluated at multiple scales. When eval-
uated at a larger scale, a more impressive result can be achieved (F-Measure:
86.0%), outperforming the competitors by at least 5.0%. Besides, our method
also achieves remarkable results on word spotting and end-to-end recognition.
Compared with the state of the art, the performance of our method has signifi-
cant improvements by 13.2%− 25.3%, for all evaluation situations.
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Table 1: Results on ICDAR2013. “S”, “W” and “G” mean recognition with
strong, weak and generic lexicon respectively.

Method
Word Spotting End-to-End

FPS
S W G S W G

Jaderberg et al. [21] 90.5 - 76 86.4 - - -

FCRNall+multi-filt [12] - - 84.7 - - - -

Textboxes [30] 93.9 92.0 85.9 91.6 89.7 83.9 -

Deep text spotter [3] 92 89 81 89 86 77 9

Li et al. [27] 94.2 92.4 88.2 91.1 89.8 84.6 1.1

Ours 92.5 92.0 88.2 92.2 91.1 86.5 4.8

Table 2: Results on ICDAR2015. “S”, “W” and “G” mean recognition with
strong, weak and generic lexicon respectively.

Method
Word Spotting End-to-End

FPS
S W G S W G

Baseline OpenCV3.0 + Tesseract[24] 14.7 12.6 8.4 13.8 12.0 8.0 -

TextSpotter [38] 37.0 21.0 16.0 35.0 20.0 16.0 1

Stradvision [24] 45.9 - - 43.7 - - -

TextProposals + DictNet [10, 20] 56.0 52.3 49.7 53.3 49.6 47.2 0.2

HUST MCLAB [43, 44] 70.6 - - 67.9 - - -

Deep text spotter [3] 58.0 53.0 51.0 54.0 51.0 47.0 9.0

Ours (720) 71.6 63.9 51.6 71.3 62.5 50.0 6.9

Ours (1000) 77.7 71.3 58.6 77.3 69.9 60.3 4.8

Ours (1600) 79.3 74.5 64.2 79.3 73.0 62.4 2.6

subway

giordano

carnaby

parliament

informatikforschung

emmerich

Fig. 6: Visualization results of ICDAR 2013 (the left), ICDAR 2015 (the middle)
and Total-Text (the right).

4.5 Curved text

Detecting and recognizing arbitrary text (e.g. curved text) is a huge superiority
of our method beyond other methods. We conduct experiments on Total-Text
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Table 3: The detection results on ICDAR2013 and ICDAR2015. For ICDAR2013,
all methods are evaluated under the “DetEval evaluation protocol. The short
sides of the input image in “Ours (det only)” and “Ours” are set to 1000.

Method
ICDAR2013

FPS
ICDAR2015

FPS
Precision Recall F-Measure Precision Recall F-Measure

Zhang et al. [55] 88.0 78.0 83.0 0.5 71.0 43.0 54.0 0.5

Yao et al. [52] 88.9 80.2 84.3 1.6 72.3 58.7 64.8 1.6

CTPN [48] 93.0 83.0 88.0 7.1 74.0 52.0 61.0 -

Seglink [43] 87.7 83.0 85.3 20.6 73.1 76.8 75.0 -

EAST [57] - - - - 83.3 78.3 80.7 -

SSTD [15] 89.0 86.0 88.0 7.7 80.0 73.0 77.0 7.7

Wordsup [18] 93.3 87.5 90.3 2 79.3 77.0 78.2 2

He et al. [16] 92.0 81.0 86.0 1.1 82.0 80.0 81.0 1.1

Ours (det only) 94.1 88.1 91.0 4.6 85.8 81.2 83.4 4.8

Ours 95.0 88.6 91.7 4.6 91.6 81.0 86.0 4.8

keluar

naughty

nurs

restaurant

aokka
cafe

home

roasted
coffee

cafepokka

perfect

potion

dikes

direct

gkeluak

noushrd

jurs

rest 3ry

syf

soid

prmer

ridosted

pokka cafe

sien

lot7

wken

qmt

prt

Fig. 7: Qualitative comparisons on Total-Text without lexicon. Top: results of
TextBoxes [30]; Bottom: results of ours.

to verify the robustness of our method in detecting and recognizing curved text.
Similarly, we input the test images with the short edges resized to 1000. The
evaluation protocol of detection is provided by [4]. The evaluation protocol of
end-to-end recognition follows ICDAR 2015 while changing the representation
of polygons from four vertexes to an arbitrary number of vertexes in order to
handle the polygons of arbitrary shapes.

To compare with other methods, we also trained a model [30] using the code
in [30] 3 with the same training data. As shown in Fig. 7, our method has a
large superiority on both detection and recognition for curved text. The results
in Table 4 show that our method exceeds [30] by 8.8 points in detection and at
least 16.6% in end-to-end recognition. The significant improvements of detection

3 https://github.com/MhLiao/TextBoxes
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Table 4: Results on Total-Text. “None” means recognition without any lexicon.
“Full” lexicon contains all words in test set.

Method
Detection End-to-End

Precision Recall F-Measure None Full

Ch,ng et al. [4] 40.0 33.0 36.0 - -

Liao et al. [30] 62.1 45.5 52.5 36.3 48.9

Ours 69.0 55.0 61.3 52.9 71.8

mainly come from the more accurate localization outputs which encircle the text
regions with polygons rather than the horizontal rectangles. Besides, our method
is more suitable to handle sequences in 2-D space (such as curves), while the
sequence recognition network used in [30, 27, 3] are designed for 1-D sequences.

4.6 Speed

Compared to previous methods, our proposed method exhibits a good speed-
accuracy trade-off. It can run at 6.9 FPS with the input scale of 720 × 1280.
Although a bit slower than the fastest method [3], it exceeds [3] by a large
margin in accuracy. Moreover, the speed of ours is about 4.4 times of [27] which
is the current state-of-the-art on ICDAR2013.

4.7 Ablation Experiments

Some ablation experiments, including “With or without character maps”, “With
or without character annotation”, and “With or without weighted edit distance”,
are discussed in the Supplementary.

5 Conclusion

In this paper, we propose a text spotter, which detects and recognizes scene
text in a unified network and can be trained end-to-end completely. Comparing
with previous methods, our proposed network is very easy to train and has the
ability to detect and recognize irregular text (e.g. curved text). The impressive
performances on all the datasets which includes horizontal text, oriented text
and curved text, demonstrate the effectiveness and robustness of our method for
text detection and end-to-end text recognition.
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1 Ablation Experiments

Table 1: Ablation experimental results. “Ours (a)”: without character annota-
tions from the real images; “Ours (b)”: without weighted edit distance.

Method
ICDAR2013 ICDAR2015

Word Spotting End-to-End Word Spotting End-to-End
S W G S W G S W G S W G

Ours(a) 91.8 90.3 85.9 90.7 89.4 84.6 76.9 71.6 61.6 76.6 69.9 59.8

Ours(b) 91.4 90.5 84.3 91.3 89.9 83.8 75.9 67.5 56.8 76.1 67.1 56.7

Ours 92.5 92.0 88.2 92.2 91.1 86.5 79.3 74.5 64.2 79.3 73.0 62.4

With or without character maps We train a model named “Ours(det only)”
which removes the subnet of the character maps from the original network to
explore the effect of training detection and recognition jointly. As shown in Table
3 in the paper, the detection results of “Ours” exceed “Ours(det only)” by 0.7%
and 2.6% on ICDAR2013 and ICDAR2015 respectively, which demonstrate that
the detection task can benefit from the recognition task when jointly training.
With or without real-world character annotation The experiment with-
out real-world character annotations is also conducted. As shown in Table 1,
although “Ours(a)” is trained without any real-world character annotation, it
still achieves competitive performances. More specifically, for horizontal text (IC-
DAR2013), it decrease “Ours”, which is trained with a few real-world character
annotations, by 0.7%−2.3% on various settings; on ICDAR2015, “Ours(a)” still
outperforms all other previous methods by a large margin.
With or without weighted edit distance We conduct experiments to verify
the effectiveness of our proposed weighted edit distance. The method of using
original edit distance is named “Ours(b)” and the results are shown in Table 1.
As shown, weighted edit distance can boost the performance by at most 7.4
points of all experiments.
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