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Abstract

In this paper we proposed a 4-stage coarse-to-fine

framework to tackle the facial landmark localization prob-

lem in-the-wild. In our system, we first predict the landmark

key points on a coarse level of granularity, which sets a

good initialization for the whole framework. Then we group

the key points into several components and refine each com-

ponent with local patches cropped within them. After that

we further refine them separately. Each key point is further

refined with multi-scale local patches cropped according to

its nearest 3-, 5-, and 7-neighbors respectively. The results

are fused by an attention gate network. Since a different

key-point configuration is adopted in our labeled dataset, a

linear transformation is finally learned with the least square

approximation to adapt our predictions to the competition’s

task.

1. Introduction

In recent years, significant progress on facial landmark

localization has been achieved, especially since Sun et

al. [24] first applied deep convolutional neural networks

(DCNNs) to this problem. Afterwards, tremendous works

emerge to improve the performance, which mainly falls into

three trends: 1) propose novel network structure to exploit

the training data for better generalization ability [25, 4, 34];

2) modify landmark prediction pipelines with multi-stage

strategy [36, 24, 38, 40, 8, 32, 41]; 3) incorporating more

information in the training process via, for instance, trans-

fer learning [20].

In this paper, we focus on the second and third meth-

ods. In particular, to the best our knowledge, we are the

first to raise the transfer problem between tasks with dif-

ferent points, and present a comprehensive framework to

tackle it. Our pipeline architecture is generally based on

the system proposed by Zhou et al. [40], in which they

proposed a coarse-to-fine network, which models each fa-

cial component refinement as an independent task. Besides,

Huang et al. [8] extend this idea and propose a multi-scale

approach to better grasp and utilize the local information to

make more accurate landmark prediction.

Inspired by all these, we proposed a coarse-to-fine

framework to predict the landmark predictions by concen-

trating on more and more fine-grained patches of facial key

points. Concretely, our framework consists of four sequen-

tial stages: 1) First of all, a pre-trained face detector is uti-

lized to locate the target region, followed by a carefully de-

signed CNN to predict the rotation angle of cropped image.

Then the cropped image is rotated to a horizon-canonical

position and fed into another CNN to predict the coarse

landmark; 2) We then separate the landmark into several

components and predict each component’s associated land-

marks respectively. 3) We further refine each point with

multi-scale local patches cropped according to its nearest 3-

, 5-, and 7- neighbors. 4) Finally, we transfer the 81-point

predicitions to the competition’s tasks with lease square ap-

proximation.

2. Related Work

Facial landmark localization is a classical topic of re-

search in computer vision. With the development of deep

learning, various methods are proposed in recent years. Our

method is to refine a coarse landmark estimation through

cascades, namely the multi-stage strategy [24, 36, 38, 40,

8, 32, 41]. Another method to perform coarse-to-fine es-

timation is to use branched networks [15]. Other works

have been done to explore different ways to localize key-

points, such as considering keypoint localization as a 3D

face model fitting problem [10, 42], initializing with head

pose predictions [33] and using separate cluster specific net-

works [29]. Despite the performance of convolutional neu-

ral networks, recent works have also tried to use recurrent

neural networks(RNNs) [19, 26, 30] in this task.

Related work also exists in advanced network architec-

tures, especially the Xception [1] and the VGG-16 archi-

tectures [22]. The Xception assumes that inter-channel and

intra-channel correlations can be entirely decoupled. This
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Figure 1. Framework overview. Preprocessings like detection and rotation are applied before making any prediction of landmark. Then

coarse landmark is produced for both inner and contour points. For inner points, component-wise and point-wise refinements are followed

in Stage 2 and Stage 3 respectively. Finally, inner points of the 68-point task are generated from the 81-point task with least square

approximation approach, which are combined with contour points of the 68-point task in Stage 1 to obtain the final result.

assumption led to a network structure build with depth-wise

(or channel-wise) separable convolution layers [27]. Resid-

ual connections, introduced by He et al. in [5], are used ex-

tensively in our proposed architecture. Furthermore, Xie et

al. proposed the ResNeXt structure [31] that reintroduced

group convolution used in AlexNet [11] into ResNet struc-

ture and achieved an improvement in their performance.

Transfer learning build systems that generalize across

different domains of different probability distributions [18,

23, 17, 37, 28], which has been widely used in computer

vision to achieve better performance on novel domains.

The practice of training a CNN on ImageNet [21] and then

adapting those features for a new target task was used to

solve a wide range of computer vision problems [16, 3]. Ex-

periments and discussions about doing fine-tuning to trans-

fer across domains have been done in [9].

3. Proposed Method

Figure 1 gives a brief illustration of our proposed 4-stage

coarse-to-fined framework. Given an input image, we first

try to rotate the detected face to the vertical direction, after

which we divide all points into two subsets, contour points

and inner points. Here we refer contour as point 0 to 18 for

the 81-point tasks and point 0 to 16 for the 68-point task.

The definition and arrangement of the 81, 68 and 39-point

landmark tasks are given in Figure 8. After obtaining coarse

landmark from Stage 1, we further separate the inner points

into 6 components and refine them with 6 individual net-

works, which brings a relative 9.75% decrease of the nor-

malized loss. In Stage 3, three different scales of patches

are generated for each point and further decrease the nor-

malized loss by 1.77%.
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Figure 2. Performance of angle regression network

3.1. Coarse Landmark

The Stage 1 is responsible for predicting an initial and

coarse landmark, which may not be so accurate but main-

tains the geometric properties of the whole face.

Generally a facial detector is applied before making any

prediction of landmark, which will output bounding box to

highlight the major part of face in given image. Then an an-

gle regression network is trained and rotate the face to the

vertical direction. These preprocessings are important as

they dramatically decrease the location and angle variance

of input images. Figure 2 gives the performance of angle re-

gression network and we can see that nearly 95% of images

are rotated back to the vertical direction within ±5◦ error.

After rotating the cropped images back to the vertical di-

rection, we divide all points into two subsets, inner points

and contour points. We will illustrate the detail reason be-

hind this in Section 4.3. Please keep mind that although we

can achieve fairly low normalized loss for both contour and

inner points after Stage 3, there are many difficulties when

transferring counter points from the 81-point task to the 68-
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Figure 3. Base module in Stage 1

point and the 39-point tasks. Thus we make a trade-off and

predict the contour points directly in the 68-point and 39-

point tasks during Stage 1.

Inspired by Xception [1] and ResNeXt [31], we use a

base module which contains 1x1 convolution, 3x3 channel-

wise convolution and skip connection as the building block

to construct our network. As shown in Figure 3, 3x3

channel-wise convolution (also known as spatial convolu-

tion) is designed for capturing the intra-channel correlation

of images, which is surrounded by two 1x1 convolution that

learn the inter-channel correlation. Besides, skip connec-

tion is important for gradient to propagate back when the

network goes deep. We build our coarse landmark predic-

tion network base on this simple model and use teacher-

student architecture during training procedure. Figure 4 il-

lustrate the details of our proposed network.

Unlike knowledge distilling proposed by Hinton et al. [6]

where they use outputs of Softmax as soft label to train stu-

dent network, we use two identical networks trained with

L2 loss. The only difference between teacher and student

network is that gradients from loss3 will be stopped before

flowing back into teacher network. As a result, student net-

work will receive supervise signal from both ground truth

and teacher network. The additional loss term from teacher

network expresses as regularization and help student net-

work to avoid overfitting. Surprisingly we find that student

network supervised by teacher network in this way consis-

tently outperforms single student network.
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Figure 4. Network for predicting the coarse landmark in Stage

1 (Gradients flow back to teacher network will be stopped. )

3.2. Component­wise Refinement

Although Stage 1 gives the basic landmark prediction

which covers most conditions, it reaches its limitation when

the face is either asymmetric or exaggerated. In a typi-

cal case, stage 1 network may predict two open eyes when

someone closes one eye with another opened. As a result,

component-wise refinement is necessary to capture the lo-

cal variations. In Stage 2, we separate inner points into 6

components, which consists of the left eyebrow, right eye-

brow, left eye, right eye, nose, and mouth. For each com-

ponent, we align the corresponding coarse landmark to the

precomputed mean face (see Figure 9), after which we feed

the aligned images into the network and predict the relative

landmark in the coordinate system of the input image. Thus

landmark predictions are meaningful only in the individual

coordinate system. They needed to be transformed back to

the coordinate system of the original image before delivered

into Stage 3.

Besides, for computation efficiency, we use straight-

through VGG style network and substitute basic module in
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Figure 5. Effect of different proportion of stage1 output landmark used for training.

Stage 1 with normal 3x3 convolution layer and eliminate

teacher network branch, which sharply decreases the com-

putation complexity from 500M FLOPs to 100M FLOPs.

3.3. Point­wise Refinement

Similar with component-wise refinement, point-wise re-

finement further refines the prediction landmark in the gran-

ularity of each point. On concretely, there are 3 multi-scale

patches for each point, which are generated by the nearest

3, 5 and 7 points in mean face respectively. These 3 patches

are fed into 3 small networks and predict corresponding 3,

5 and 7 landmark points, with an attentional gate followed

by to weight them.

Also, in stage 3 we further reduce the number of chan-

nels of all convolution layers and obtain a 25M FLOPs net-

work for each point, which aims to balance the computation

complexity of each stage.

3.4. Final transfer

There are several approaches for transferring the P-point

landmark task to the Q-point landmark task. One obvi-

ous and base method is the least square approximation ap-

proach, which tries to minimize the square loss function:

T0 = argmin
T

||X ·T−Y||2F , (1)

where X ∈ R
N×2P , Y ∈ R

N×2Q and T ∈ R
2P×2Q

Here X is from source data domain and Y is from target

data domain. T is a transfer matrix which describes the

linear relation between these two domains.

Equation 1 has a close-form solution:

T0 = (XT ·X)−1 ·XT ·Y. (2)

Besides, we usually expand the source matrix X by con-

catenating a column vector 1 ∈ R
N×1, as well as Y. Then,

T0 has new dimension of (2P + 1)× (2Q+ 1)

In our case, P is 81, and Q is either 68 or 39. For simplic-

ity we only introduce the detail of the 68-point task, leaving

the 39-point task with a similar treatment. For the 68-point

task, we separate all samples into training, validation and

test set [35, 26]. We learn the transfer matrix T0 in training

set and apply it to validation and test set. We can evaluate

the result on validation set and submit the test set result in

the competition.

Alternatively, we can train a neural network to learn the

nonlinear relation between the source domain and target do-

main. However, a worse result is observed compared with

the least square approximation approach.

4. Experiments

In this section, we try to investigate the possibility of de-

coupling of all stages and systematically evaluate the per-

formance of each stage. In addition, we find that contour

loss plays an important role when transferring from the 81-

point task to the 68-point and 39-point tasks. Moreover,

contours loss of tangent direction makes much more contri-

bution to the total loss than that of normal direction.
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Landmark Task
Stage1

Coarse Landmark

Stage 2

Component-wise Refinement

Stage 3

Point-wise Refinement

Stage 4

Transfer

81 points

(inhouse)
4.317/4.268† 3.896/3.717† 3.827/1.373† -

68 points

(frontal)
- - - 4.471‡

39 points

(profile)
- - - 2.774*

† The format is vreal/vgt and all results are normalized by distance of two pupils.
‡ Normalized by distance of two pupils.
* Normalized by diagonal distance of tightest bounding box of ground truth landmark.

Table 1. Performance of each stage. (All results are multiplied by 100 for brevity)

4.1. Stage Decoupling

The neural network in each stage is trained with images

cropped with previous landmark prediction, that makes the

whole framework essentially sequential. This brings dif-

ficulties in a competition as we want to parallel the train-

ing of each stage to shorten the experiment iteration period.

Consequently, it is appealing to answer a simple but impor-

tant question, whether we can decouple each stage and treat

them separately.

A natural solution would be to train each stage with the

images cropped with ground truth and evaluate with real

output of the previous stage. Therefore we conduct an ex-

periment to investigate the difference between coupled ap-

proach and this vanilla solution from stage1 to stage2. Here

we give the same intensity of augmentation for both stage1

output and ground truth. As shown in Figure 5, we find that

too much proportion of stage1 landmark prediction will ac-

tually hurt the performance. In particular, except for con-

tour which shows a consistent increment of loss when the

proportion varies in [0.0, 0.25, 0.5, 0.75, 1.0], other compo-

nents have slightly better performance when the propor-

tion reaches 0.25. However, worse performance is obtained

when the proportion exceeds 0.25 for all components.

Besides, we conduct another experiment where we only

augment those images cropped with ground truth, and find

similar tendency with worse performance. As shown in

Figure 5, more proportion of non-augmented stage1 output

tends to overfit and results in deterioration of performance,

which is quite obvious when the proportion reaches 1.0.

As a result, 0.25 may be the ‘sweet point’ for compo-

nents except for contour. However, in practice we make a

trade-off and utilize decoupled strategy to speed up training

procedure.

4.2. Stage Performance

Table 1 illustrates the key results of each stage. Here

we evaluate the performance of each stage with not only

the real output landmark of previous stage, but also ground

truth landmark (First row of Table 1). For clarification we
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Figure 6. Tangent and normal loss of contour points

denote vreal and vgt for these two results. We compare vreal
with vgt and our findings lie in three-fold:

• Both vreal and vgt decrease steadily from stage 1 to

stage 3, especially for vgt which achieves 1.373 after

Stage 3.

• vgt expresses as a lower bound of corresponding stage.

• Except for Stage 3 where vreal stands far away from

vgt, in Stage 2 and Stage 3 vreal is approaching vgt.

The first and second observations are interpretable be-

cause we train each stage with ground truth landmark and

the network adapt well to the distribution of ground truth

landmark. Thus vgt becomes the lower bound of vreal. As

for the third observation, we can draw a conclusion that

component-wise refinement is sufficient for capturing local
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Figure 7. Performance of test benchmark

variance and finer granularity helps little for final predic-

tion.

4.3. Transfer Cost

It is unexpected to see that directly transferring points

from the 81-point task will result in worse performance. We

analyze the loss distribution and find the loss from contour

points plays the most important role. Figure 6 further de-

composes the contour loss into tangent direction and normal

direction and discovering that tangent loss raises sharply

when transferring from the 81-point task to the 68-point

task. Simply from mean face we can hardly tell the dif-

ference of contour points between the 81-point task and the

68-point task (see Figure 8). However, after studying the

samples case by case, we seem to find the essential reason.

For the 81-point task, by definition, point 0, 18, 20, 54,

58 and 69 are always stand in the same line. But for the 68-

point task, point 0 and 18 have 3D invariant property. This

means that no matter what the pose is, point 0 and point 18

refer to the top corner of ear which intersects with the face.

As a result, when bowing or raising the head, there will be

much inconsistency for the leftmost point between the 81-

point and the 68-point tasks, as well as the rightmost point

in the contour.

To sum up, in order to predict the leftmost and rightmost

key point in the 68-point task, it is necessary to infer the

pose of the face with larger receptive field. Thus it is nearly

impossible to cover all conditions with a linear transforma-

tion matrix T0. And the raise of the tangent-direction loss

in contour points also sheds light on this.

4.4. Public Benchmark Result

We also compare our result with recent state-of-the-arts

on the 300-W dataset in Table 2. We have significantly im-

proved the performance and achieve new state-of-the-arts.

4.5. Private Benchmark Result

Figure 7 gives the performance of private test benchmark

of semifrontal (the 68-point) and profile (the 39-point) tasks

Method Common Challenging Fullset

CFSS [41] 4.73 9.98 5.76

CFSS Practical[41] 4.79 10.92 5.99

cGPRT [14] - - 5.71

TCDCN [39] 4.80 8.60 5.54

Fan et al. [2] 4.76 8.25 5.45

Honari et al. [7] 4.67 8.44 5.41

DCR [12] 4.19 8.42 5.02

Lai et al. [13] 4.07 8.29 4.90

Ours 3.73 7.12 4.47

Table 2. Comparison of state-of-the-arts approaches.

from the organizer [35, 26].

5. Conclusion

In this paper we present a 4-stage coarse-to-fine frame-

work to address the facial landmark localization prob-

lem. We systematically investigate the effectiveness of each

stage and successfully decouple them in training procedure.

Finally we transfer the inner points of the 81-point task to

the 68-point and 39-point ones with least square approxi-

mation approach.
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