
Shape Robust Text Detection with Progressive Scale Expansion Network

Wenhai Wang1,4∗, Enze Xie2,5∗, Xiang Li3,4∗∗†, Wenbo Hou1, Tong Lu1‡, Gang Yu5, Shuai Shao5

1National Key Lab for Novel Software Technology, Nanjing University
2Department of Comuter Science and Technology, Tongji University

3School of Computer and Engineering, Nanjing University of Science and Technology
4Momenta

5Megvii (Face++) Technology Inc.
{wangwenhai362, Johnny ez, lysucuo}@163.com, xiang.li.implus@qq.com

lutong@nju.edu.cn, {yugang, shaoshuai}@megvii.com

Abstract

Scene text detection has witnessed rapid progress espe-
cially with the recent development of convolutional neu-
ral networks. However, there still exists two challenges
which prevent the algorithm into industry applications. On
the one hand, most of the state-of-art algorithms require
quadrangle bounding box which is in-accurate to locate the
texts with arbitrary shape. On the other hand, two text in-
stances which are close to each other may lead to a false
detection which covers both instances. Traditionally, the
segmentation-based approach can relieve the first problem
but usually fail to solve the second challenge. To address
these two challenges, in this paper, we propose a novel
Progressive Scale Expansion Network (PSENet), which can
precisely detect text instances with arbitrary shapes. More
specifically, PSENet generates the different scale of kernels
for each text instance, and gradually expands the minimal
scale kernel to the text instance with the complete shape.
Due to the fact that there are large geometrical margins
among the minimal scale kernels, our method is effective
to split the close text instances, making it easier to use
segmentation-based methods to detect arbitrary-shaped text
instances. Extensive experiments on CTW1500, Total-Text,
ICDAR 2015 and ICDAR 2017 MLT validate the effective-
ness of PSENet. Notably, on CTW1500, a dataset full of
long curve texts, PSENet achieves a F-measure of 74.3% at
27 FPS, and our best F-measure (82.2%) outperforms state-

∗Authors contributed equally.
†Xiang Li is with PCA Lab, Key Lab of Intelligent Perception and

Systems for High-Dimensional Information of Ministry of Education, and
Jiangsu Key Lab of Image and Video Understanding for Social Security,
School of Computer Science and Engineering, Nanjing University of Sci-
ence and Technology, Nanjing, 210094, China. Xiang Li is also a visiting
scholar in Momenta.
‡Corresponding author.

(a) (b)

(c) (d)

Figure 1. The results of different methods, best viewed in color.
(a) is the original image. (b) refers to the result of regression-
based method, which displays disappointing detections as the red
box covers nearly more than half of the context in the green box.
(c) is the result of naive semantic segmentation, which mistakes
3 text instances as 1 instance since their boundary pixels are par-
tially connected. (d) is the result of our proposed PSENet, which
successfully distinguishs and detects the 4 unique text instances.

of-art algorithms by 6.6%. The code will be released in the
future.

1. Introduction
Scene text detection in the wild is a fundamental prob-

lem with numerous applications such as scene understand-
ing, product identification, and autonomous driving. Many
progress has been made in recent years with the rapid devel-
opment of Convolutional Neural Networks (CNNs) [9, 14,
31]. We can roughly divide the existing CNN based algo-
rithm into two categories: regression-based approaches and
segmentation-based approaches.

1

ar
X

iv
:1

90
3.

12
47

3v
1 

 [
cs

.C
V

] 
 2

8 
M

ar
 2

01
9



For the regression-based approaches [36, 43, 32, 16, 42,
23, 11, 13, 27], the text targets are usually represented in the
forms of rectangles or quadrangles with certain orientations.
However, the regression-based approaches fail to deal with
the text instance with arbitrary shapes, e.g., the curve texts
as shown in Fig. 1 (b). Segmentation-based approaches, on
the other hand, locate the text instance based on pixel-level
classification. However, it is difficult to separate the text
instances which are close with each other. Usually, a false
detection which covers all the text instances close to each
other may be predicted based on the segmentation-based ap-
proach. One example is shown in Fig. 1 (c).

To address these problems, in this paper, we propose a
novel kernel-based framework, namely, Progressive Scale
Expansion Network (PSENet). Our PSENet has the follow-
ing two benefits. First, as a segmentation-based method,
PSENet performs pixel-level segmentation, which is able to
precisely locate the text instance with arbitrary shape. Sec-
ond, we propose a progressive scale expansion algorithm,
with which the adjacent text instances can be successfully
identified as shown in Fig. 1 (d). More specifically, we as-
sign each text instance with multiple predicted segmenta-
tion areas, which are denoted as “kernels” for simplicity.
Each kernel has the similar shape to the original text in-
stance but different scales. To obtain the final detections,
we adopt a progressive scale expansion algorithm based on
Breadth-First-Search (BFS). Generally, there are 3 steps: 1)
starting from the kernels with minimal scales (instances can
be distinguished in this step); 2) expanding their areas by
involving more pixels in larger kernels gradually; 3) finish-
ing until the complete text instances (the largest kernels) are
explored.

There are three potential reasons for the design of the
progressive scale expansion algorithm. First, the kernels
with minimal scales are quite easy to be separated as their
boundaries are far away from each other. Second, the min-
imal scale kernels can not cover the complete areas of text
instances (see Fig. 2 (b)). Therefore, it is necessary to re-
cover the complete text instances from the minimal scale
kernels. Third, the progressive scale expansion algorithm
is a simple and efficient method to expand the small ker-
nels to complete text instances, which ensures the accurate
locations of text instances.

To show the effectiveness of our proposed PSENet, we
conduct extensive experiments on four competitive bench-
mark datasets including ICDAR 2015 [17], ICDAR 2017
MLT [1] ,CTW1500 [24] and Total-Text [2]. Among these
datasets, CTW1500 and Total-Text are explicitly designed
for curve text detection. Specifically, on CTW1500, a
dataset with long curve texts, we outperform state-of-the-art
results by absolute 6.6%, and our real-time model achieves
a comparable performance (74.3%) at 27 FPS. Furthermore,
the proposed PSENet also achieves promising performance

(a) Ground-Truth (b) Kernel Scale = 0.5

Result by CRNN: axiiResult by CRNN: Exit

Figure 2. Visualization of complete text instance and kernel of text
instance. It can be seen that CRNN [33] recognizes complete text
instance correctly but fail to recognize the kernel, because the ker-
nel can not cover the complete areas of text instances.

on multi-oriented and multi-lingual text datasets: ICDAR
2015 and ICDAR 2017 MLT.

2. Related Work

Scene text detection based on deep learning methods
have achieved remarkable results over the past few years.
A major of modern text detectors are based on CNN
framework, in which scene text detection is roughly for-
mulated as two categories: regression-based methods and
segmentation-based methods.

Regression-based methods often based on general ob-
ject detection frameworks, such Faster R-CNN [31] and
SSD [22]. TextBoxes [19] modified the anchor scales and
shape of convolution kernels to adjust to the various as-
pect ratios of the text. EAST [43] use FCN [25] to directly
predict score map, rotation angle and text boxes for each
pixel. RRPN [28] adopted Faster R-CNN and developed
rotation proposals of RPN part to detect arbitrary oriented
text. RRD [20] extracted feature maps for text classification
and regression from two separately branches to better long
text detection.

However, most of the regression-based methods often
require complex anchor design and cumbersome multiple
stages, which might require exhaustive tuning and lead to
sub-optimal performance. Moreover, the above works were
specially designed for multiple oriented text detection and
may fall short when handling curve texts, which are actually
widely distributed in real-world scenarios.

Segmentation-based methods are mainly inspired by
fully convolutional networks(FCN) [25]. Zhang et al . [40]
first adopted FCN to extract text blocks and detect char-
acter candidates from those text blocks via MSER. Yao
et al . [39] formulated one text region as various properties,
such as text region and orientation, then utilized FCN to
predict the corresponding heatmaps. Lyu et al .[27] utilized
corner localization to find suitable irregular quadrangles for
text instances. PixelLink [4] separated texts lying close to
each other by predicting pixel connections between differ-
ent text instances. Recently, TextSnake [26] used ordered

2



𝐹

𝑃5

𝑃4

𝑃2

𝑃3

ℂ

Progressive Scale Expansion

𝑆1

𝑆𝑛−1

𝑆𝑛

…

𝑅

Figure 3. Illustration of our overall pipeline. The left part of pipeline is implemented from FPN [21]. The right part denotes the feature
fusion and the progressive scale expansion algorithm.

disks to represent curve text for curve text detection. SPC-
Net [38] used instance segmentation framework and utilize
context information to detect text of arbitrary shape while
suppressing false positives.

The above works have achieved excellent performances
over several horizontal and multi-oriented text benchmarks.
Similarly, most of the above approaches have not paid spe-
cial attention to curve text, except for TextSnake [26]. How-
ever, TextSnake still needs time-consuming and compli-
cated post-processing steps (Centralizing, Striding and Slid-
ing) during inference, while our proposed Progressive Scale
Expansion needs only one clean and efficient step.

3. Proposed Method

In this section, we first introduce the overall pipeline
of the proposed Progressive Scale Expansion Network
(PSENet). Next, we present the details of progressive scale
expansion algorithm, and show how it can effectively dis-
tinguish the text instances lying closely. Further, the way
of generating label and the design of loss function are in-
troduced. At last, we describe the implementation details of
PSENet.

3.1. Overall Pipeline

A high-level overview of our proposed PSENet is il-
lustrated in Fig. 3. We use ResNet [10] as the backbone
of PSENet. We concatenate low-level texture feature with
high-level semantic feature. These maps are further fused
in F to encode information with various receptive views.
Intuitively, such fusion is very likely to facilitate the gen-
erations of the kernels with various scales. Then the fea-
ture map F is projected into n branches to produce multi-
ple segmentation results S1, S2, ..., Sn. Each Si would be
one segmentation mask for all the text instances at a cer-
tain scale. The scales of different segmentation mask are
decided by the hyper-parameters which will be discussed

in Sec. 3.4. Among these masks, S1 gives the segmenta-
tion result for the text instances with smallest scales (i.e.,
the minimal kernels) and Sn denotes for the original seg-
mentation mask (i.e., the maximal kernels). After obtaining
these segmentation masks, we use progressive scale expan-
sion algorithm to gradually expand all the instances’ kernels
in S1, to their complete shapes in Sn, and obtain the final
detection results as R.

3.2. Network Design

The basic framework of PSENet is implemented from
FPN [21]. We firstly get four 256 channels feature maps
(i.e. P2, P3, P4, P5) from the backbone. To further combine
the semantic features from low to high levels, we fuse the
four feature maps to get feature map F with 1024 channels
via the function C(·) as:

F = C(P2, P3, P4, P5)

= P2 ‖ Up×2(P3) ‖ Up×4(P4) ‖ Up×8(P5),
(1)

where “‖” refers to the concatenation and Up×2(·),
Up×4(·), Up×8(·) refer to 2, 4, 8 times upsampling, respec-
tively. Subsequently, F is fed into Conv(3, 3)-BN-ReLU
layers and is reduced to 256 channels. Next, it passes
through n Conv(1, 1)-Up-Sigmoid layers and produces n
segmentation results S1, S2, ..., Sn. Here, Conv, BN, ReLU
and Up refer to convolution [18], batch normalization [15],
rectified linear units [6] and upsampling.

3.3. Progressive Scale Expansion Algorithm

As shown in Fig. 1 (c), it is hard for the segmentation-
based method to separate the text instances that are close to
each other. To solve this problem, we propose a progressive
scale expansion algorithm.

Here is a vivid example (see Fig. 4) to explain the proce-
dure of progressive scale expansion algorithm, whose cen-
tral idea is brought from the Breadth-First-Search (BFS) al-
gorithm. In the example, we have 3 segmentation results

3



(e) 𝑆2 (f) 𝑆3

(g) Scale Expansion

(a) 𝑆1 (b) (c) (d)

CC EXEX

Figure 4. The procedure of progressive scale expansion algorithm. CC refers to the function of finding connected components. EX
represents the scale expansion algorithm. (a), (e) and (f) refer to S1, S2 and S3, respectively. (b) is the initial connected components. (c)
and (d) is the results of expansion. (g) is the illustration of expansion. The blue and orange areas represent the kernels of different text
instances. The gray girds represent the pixels need to be involved. The red box in (g) refers to the conflicted pixel.

S = {S1, S2, S3} (see Fig. 4 (a), (e), (f)). At first, based
on the minimal kernels’ map S1 (see Fig. 4 (a)), 4 distinct
connected components C = {c1, c2, c3, c4} can be found as
initializations. The regions with different colors in Fig. 4
(b) represent these different connected components, respec-
tively. By now we have all the text instances’ central parts
(i.e., the minimal kernels) detected. Then, we progressively
expand the detected kernels by merging the pixels in S2,
and then in S3. The results of the two scale expansions are
shown in Fig. 4 (c) and Fig. 4 (d), respectively. Finally, we
extract the connected components which are marked with
different colors in Fig. 4 (d) as the final predictions for text
instances.

The procedure of scale expansion is illustrated in
Fig. 4 (g). The expansion is based on Breadth-First-Search
algorithm which starts from the pixels of multiple kernels
and iteratively merges the adjacent text pixels. Note that
there may be conflicted pixels during expansion, as shown
in the red box in Fig. 4 (g). The principle to deal with
the conflict in our practice is that the confusing pixel can
only be merged by one single kernel on a first-come-first-
served basis. Thanks to the “progressive” expansion proce-
dure, these boundary conflicts will not affect the final de-
tections and the performances. The detail of scale expan-
sion algorithm is summarized in Algorithm 1. In the pseu-
docode, T, P are the intermediate results. Q is a queue.
Neighbor(·) represents the neighbor pixels (4-ways) of p.
GroupByLabel(·) is the function of grouping the intermedi-
ate result by label. “Si[q] = True” means that the predicted

Algorithm 1 Scale Expansion Algorithm
Require: Kernels: C, Segmentation Result: Si

Ensure: Scale Expanded Kernels: E
1: function EXPANSION(C, Si)
2: T ← ∅;P ← ∅;Q← ∅
3: for each ci ∈ C do
4: T ← T ∪ {(p, label) | (p, label) ∈ ci}
5: P ← P ∪ {p | (p, label) ∈ ci}
6: Enqueue(Q, ci) // push all the elements in ci into Q
7: end for
8: while Q 6= ∅ do
9: (p, label)← Dequeue(Q) // pop the first element of Q

10: if ∃q ∈ Neighbor(p) and q /∈ P and Si[q] = True then
11: T ← T ∪ {(q, label)};P ← P ∪ {q}
12: Enqueue(Q, (q, label)) // push the element (q, label) into Q
13: end if
14: end while
15: E = GroupByLabel(T )
16: return E
17: end function

value of pixel q in Si belongs to the text part. C and E are
used to keep the kernels before and after expansion respec-
tively;

3.4. Label Generation

As illustrated in Fig. 3, PSENet produces segmentation
results (e.g. S1, S2, ..., Sn) with different kernel scales.
Therefore, it requires the corresponding ground truths with
different kernel scales during training. In our practice, these
ground truth labels can be conducted simply and effectively
by shrinking the original text instance. The polygon with
blue border in Fig. 5 (b) denotes the original text instance
and it corresponds to the largest segmentation label mask

4



(a)

shrink & fill

(b)

(c)

𝑑𝑖 𝑝𝑛 𝑝𝑖

Figure 5. The illustration of label generation. (a) contains the an-
notations for d, pi and pn. (b) shows the original text instances.
(c) shows the segmentation masks with different kernel scales.

(see the rightmost map in Fig. 5 (c)). To obtain the shrunk
masks sequentially in Fig. 5 (c), we utilize the Vatti clipping
algorithm [37] to shrink the original polygon pn by di pix-
els and get shrunk polygon pi (see Fig. 5 (a)). Subsequently,
each shrunk polygon pi is transferred into a 0/1 binary
mask for segmentation label ground truth. We denote these
ground truth maps as G1, G2, ..., Gn respectively. Mathe-
matically, if we consider the scale ratio as ri, the margin di
between pn and pi can be calculated as:

di =
Area(pn)× (1− r2i )

Perimeter(pn)
, (2)

where Area(·) is the function of computing the polygon
area, Perimeter(·) is the function of computing the polygon
perimeter. Further, we define the scale ratio ri for ground
truth map Gi as:

ri = 1− (1−m)× (n− i)
n− 1

, (3)

where m is the minimal scale ratio, which is a value in
(0, 1]. Based on the definition in Eqn. (3), the values of
scale ratios (i.e., r1, r2, ..., rn) are decided by two hyper-
parameters n and m, and they increase linearly from m to
1.

3.5. Loss Function

For learning PSENet, the loss function can be formulated
as:

L = λLc + (1− λ)Ls, (4)

where Lc and Ls represent the losses for the complete text
instances and the shrunk ones respectively, and λ balances
the importance between Lc and Ls.

It is common that the text instances usually occupy only
an extremely small region in natural images, which makes
the predictions of network bias to the non-text region, when
binary cross entropy [3] is used. Inspired by [29], we adopt
dice coefficient in our experiment. The dice coefficient
D(Si, Gi) is formulated as in Eqn. (5):

D(Si, Gi) =
2
∑

x,y(Si,x,y ×Gi,x,y)∑
x,y S

2
i,x,y +

∑
x,y G

2
i,x,y

, (5)

where Si,x,y and Gi,x,y refer to the value of pixel (x, y) in
segmentation result Si and ground truth Gi, respectively.

Furthermore, there are many patterns similar to text
strokes, such as fences, lattices, etc. Therefore, we adopt
Online Hard Example Mining (OHEM) [34] to Lc during
training to better distinguish these patterns.
Lc focuses on segmenting the text and non-text region.

Let us consider the training mask given by OHEM as M ,
and thus Lc can be formulated as Eqn. (6).

Lc = 1−D(Sn ·M,Gn ·M), (6)

Ls is the loss for shrunk text instances. Since they are encir-
cled by the original areas of the complete text instances, we
ignore the pixels of the non-text region in the segmentation
result Sn to avoid a certain redundancy. Therefore, Ls can
be formulated as follows:

Ls = 1−
∑n−1

i=1 D(Si ·W,Gi ·W )

n− 1
,

Wx,y =

{
1, if Sn,x,y ≥ 0.5;
0, otherwise.

(7)

Here, W is a mask which ignores the pixels of the non-
text region in Sn, and Sn,x,y refers to the value of pixel
(x, y) in Sn.

4. Experiment
In this section, we first conduct ablation studies for

PSENet. Then, we evaluate the proposed PSENet on four
recent challenging public benchmarks: CTW1500, Total-
Text, ICDAR 2015 and ICDAR 2017 MLT, and compare
PSENet with state-of-the-art methods.

4.1. Datasets

CTW1500 [24] is a challenging dataset for long curve
text detection, which is constructed by Yuliang et al. [24].
It consists of 1000 training images and 500 testing images.
Different from traditional text datasets (e.g. ICDAR 2015,
ICDAR 2017 MLT), the text instances in CTW1500 are la-
belled by a polygon with 14 points which can describe the
shape of an arbitrarily curve text.

Total-Text [2] is a newly-released dataset for curve text
detection. Horizontal, multi-Oriented and curve text in-
stances are contained in Total-Text. The benchmark con-
sists of 1255 training images and 300 testing images.

ICDAR 2015 (IC15) [17] is a commonly used dataset
for text detection. It contains a total of 1500 pictures, 1000
of which are used for training and the remaining are for
testing. The text regions are annotated by 4 vertices of the
quadrangle.

ICDAR 2017 MLT (IC17-MLT) [1] is a large scale
multi-lingual text dataset, which includes 7200 training im-
ages, 1800 validation images and 9000 testing images. The

5



dataset is composed of complete scene images which come
from 9 languages.

4.2. Implementation Details

We use the ResNet [10] pre-trained on ImageNet [5] as
our backbone. All the networks are optimized by using
stochastic gradient descent (SGD). We use 7200 IC17-MLT
training images and 1800 IC17-MLT validation images to
train the model and report the result on IC17-MLT. Note
that no extra data, e.g. SynthText [7], is adopted to train
IC17-MLT. We train PSENet on IC17-MLT with batch size
16 on 4 GPUs for 180K iterations. The initial learning rate
is set to 1 × 10−3, and is divided by 10 at 60K and 120K
iterations.

Two training strategies are adopted in the rest of all
datasets:(1) Training from scratch. (2) Fine-tuning on IC17-
MLT model. When training from scratch, we train PSENet
with batch size 16 on 4 GPUs for 36K iterations, and the
initial learning rate is set to 1 × 10−3 and is divided by 10
at 12K and 24K iterations. When fine-tuning on IC17-MLT
model, the number of iterations is 24K, and the initial learn-
ing rate is 1×10−4 which is divided by 10 at 12K iterations.

We use a weight decay of 5× 10−4 and a Nesterov mo-
mentum [35] of 0.99 without dampening. We adopt the
weight initialization introduced by [8].

During training, we ignore the blurred text regions la-
beled as DO NOT CARE in all datasets. The λ of loss bal-
ance is set to 0.7. The negative-positive ratio of OHEM
is set to 3. The data augmentation for training data is
listed as follows: 1) the images are rescaled with ratio
{0.5, 1.0, 2.0, 3.0} randomly; 2) the images are horizon-
tally flipped and rotated in the range [−10◦, 10◦] randomly;
3) 640 × 640 random samples are cropped from the trans-
formed images. For quadrangular text, we calculate the
minimal area rectangle to extract the bounding boxes. For
curve text dataset, the output of PSE is applied to produce
the final result.

4.3. Ablation Study

Can kernels be used as the final result? The aim of
kernels is to roughly locate the text instance and separate
the text instances standing closely to each other. However,
the minimal scale kernels can not cover the complete areas
of text instances, which does harm to the text detection and
recognition. In Fig. 6 (a), the F-measures of the detector
used minimal scale kernel only (the dash curves) is terri-
ble on ICDAR 2015 and CTW1500 datasets. In addition,
we use a modern text recognizer CRNN [33] to recognize
the text in complete text instance and kernel, and find that
CRNN failed to recognize the text in the kernel (see Fig. 2).
Thus, the kernel can not be used as the final detection result.

Influence of the minimal kernel scale. We study the ef-
fect of the minimal scalem by setting the number of kernels

n to 2 and let the minimal scale m vary from 1 to 0.1. The
models are evaluated on ICDAR 2015 and CTW1500 two
datasets. We can find from Fig. 6 (a) that the F-measures on
the test sets drops when m is too large or too small. Note
that when setting kernel scale 1, we only use text segmen-
tation map as the final result and without progressive scale
expansion algorithm. Obviously, without PSE the baseline’s
performance is unsatisfactory because the network fails to
separate the text lying closely to each other. When m is too
large, it is hard for PSENet to separate the text instances
lying closely to each other. When m is too small, PSENet
often splits a whole text line into different parts incorrectly
and the training can not converge very well.

Influence of the kernel numbers. We investigate the
effect of the number of kernels n on the performance of
PSENet. Specifically, we hold the minimal scale m con-
stant and train PSENet with different number of kernels n.
In details, we set m start from 0.4 for ICDAR 2015 and 0.6
for CTW1500 and let n increase from 2 to 10. The mod-
els are evaluated on ICDAR 2015 and CTW1500 datasets.
Fig. 6 (b) shows the experimental results, from which we
can find that with the growing of n, the F-measure on the
test set keeps rising and begins to level off when n ≥ 5.
The advantage of multiple kernels is that it can accurate re-
construct two text instances with large gaps of size where
they lying closely to each other.

Influence of the backbone. Deeper neural networks
have been proven to boost the performance of large scale
image classification and object detection. To better analyze
the capability of proposed PSENet, we adopt ResNet as our
backbone with three different depths of {50, 101, 152} and
test on the large scale dataset IC17-MLT. As shown in Ta-
ble 1, under the same setting, improving the depth of back-
bone from 50 to 152 can clearly improve the performance
from 70.8% to 72.2%, with 1.4% absolute improvement.

4.4. Comparisons with State-of-the-Art Methods

Detecting Curve Text. To test the ability of curve
text detection, we evaluate our method on CTW1500 and

50

55

60

65

70

75

80

0.10.20.30.40.50.60.70.80.91

F
-M

ea
su

re
 (

%
)

Minimal Kernel Scale (m)

IC15 (n=2)

IC15 (kernel only)

CTW-1500 (n=2)

CTW-1500 (kernel only)

77

77.5

78

78.5

79

79.5

80

80.5

81

2 3 4 5 6 7 8 9 10

F
-M

ea
su

re
 (

%
)

Kernel Number (n)

IC15 (m=0.4)

CTW-1500 (m=0.6)

(a) (b)

Figure 6. Ablation study on minimal kernel scale (m) and ker-
nel number (n) (Eqn. (3)). There results are based on PSENet-1s
(Resnet 50) trained from scratch. “1s” means the shape of output
map is 1/1 of the input image.

6



Methods P R F
PSENet (ResNet50) 73.7 68.2 70.8
PSENet (ResNet101) 74.8 68.9 71.7
PSENet (ResNet152) 75.3 69.2 72.2

Table 1. Performance grows with deeper backbones on IC17-MLT.
“P”, “R” and “F” represent the precision, recall and F-measure
respectively.

Method Ext CTW1500
P R F FPS

CTPN [36] - 60.4* 53.8* 56.9* 7.14
SegLink [32] - 42.3* 40.0* 40.8* 10.7
EAST [43] - 78.7* 49.1* 60.4* 21.2

CTD+TLOC [24] - 77.4 69.8 73.4 13.3
TextSnake [26] X 67.9 85.3 75.6 -

PSENet-1s - 80.57 75.55 78.0 3.9
PSENet-1s X 84.84 79.73 82.2 3.9
PSENet-4s X 82.09 77.84 79.9 8.4

Table 2. The single-scale results on CTW1500. “P”, “R” and “F”
represent the precision, recall and F-measure respectively. “1s”
and “4s” means the width and height of output map is 1/1 and
1/4 of the input test image. * indicates the results from [24]. “Ext”
indicates external data.

Total-Text, which mainly contains the curve texts. In the
test stage, we scale the longer side of images to 1280
and evaluate the results using the same evaluation method
with [24]. We report the single-scale performance of
PSENet on CTW1500 and Total-Text in Table 2 and Ta-
ble 3, respectively. Note that we only use ResNet50 as the
backbone.

On CTW1500, PSENet surpasses all the counterparts
even without external data. Notably, we can find that the F-
measure (82.2%) achieved by PSENet is 8.8% higher than
CTD+TLOC and 6.6% higher than TextSnake on the F-
measure. To our best knowledge, this is the best reported
result in literature.

On Total-Text, the proposed PSENet achieves 84.02%,
77.96% and 80.87% in the precision, recall and F-measure,
outperforming state-of-the-art methods over 2.47%. Note
that our PSENet extremely surpasses the baseline on Total-
Text by more than 40% in the F-measure.

The performance on CTW1500 and Total-Text demon-
strates the solid superiority of PSENet when handling curve
texts or the texts with arbitrary shapes. We also illustrate
several challenging results and make some visual compar-
isons to the state-of-the-art CTD+TLOC [24] in Fig. 7 (d).
The comparisons clearly demonstrate that PSENet can el-
egantly distinguish very complex curve text instances and
separate them in a compelling manner.

Detecting Oriented Text. We evaluate the proposed
PSENet on the IC15 to test its ability for oriented text detec-
tion. Only ResNet50 is adopted as the backbone of PSENet.
During inference, we scale the long side of input images to
2240. We compare our method with other state-of-the-art
methods in Table 4. With only single scale setting, our
method achieves a F-measure of 85.69%, surpassing the
state of the art results by more than 3%. In addition, we

Method Ext Total-Text
P R F FPS

SegLink [32] - 30.3 23.8 26.7 -
EAST [43] - 50.0 36.2 42.0 -

DeconvNet [2] - 33.0 40.0 36.0 -
TextSnake [26] X 82.7 74.5 78.4 -

PSENet-1s - 81.77 75.11 78.3 3.9
PSENet-1s X 84.02 77.96 80.87 3.9
PSENet-4s X 84.54 75.23 79.61 8.4

Table 3. The single-scale results on Total-Text. “P”, “R” and “F”
represent the precision, recall and F-measure respectively. “1s”
and “4s” means the width and height of output map is 1/1 and 1/4
of the input test image. “Ext” indicates external data. Note that
EAST and SegLink were not fine-tuned on Total-Text. Therefore
their results are included only for reference.

Method Ext IC15
P R F FPS

CTPN [36] - 74.22 51.56 60.85 7.1
SegLink [32] X 73.1 76.8 75.0 -
SSTD [11] X 80.23 73.86 76.91 7.7

WordSup [13] X 79.33 77.03 78.16 -
EAST [43] - 83.57 73.47 78.2 13.2
RRPN [28] - 82.0 73.0 77.0 -

R2CNN [16] - 85.62 79.68 82.54 -
DeepReg [12] - 82.0 80.0 81.0 -
PixelLink [4] - 82.9 81.7 82.3 7.3
Lyu et al. [27] X 94.1 70.7 80.7 3.6

RRD [20] X 85.6 79.0 82.2 6.5
TextSnake [26] X 84.9 80.4 82.6 1.1

PSENet-1s - 81.49 79.68 80.57 1.6
PSENet-1s X 86.92 84.5 85.69 1.6
PSENet-4s X 86.1 83.77 84.92 3.8

Table 4. The single-scale results on IC15. “P”, “R” and “F” rep-
resent the precision, recall and F-measure respectively. “1s” and
“4s” means the width and height of output map is 1/1 and 1/4 of
the input test image. “Ext” indicates external data.

demonstrate some test examples in Fig. 7 (a), and PSENet
can accurately locate the text instances with various orien-
tations.

Detecting MultiLingual Text. To test the robustness
of PSENet to multiple languages, we evaluate PSENet on
IC17-MLT benchmark. Due to the large scale of the dataset,
in order to fully exploit the potential of the PSENet, we
adopt Res50 and Res152 as the backbone. We enlarge the
original image by 2 times, the proposed PSENet achieve a
F-measure of 72.13%, outperforming state of the art meth-
ods by absolute 5.3%. In addition, we demonstrate some
test examples in Fig. 7 (b), and PSENet can accurately lo-
cate the text instances with multiple languages. This proves
that PSENet is robust for multi-lingual and multi-oriented
detection and can indeed be deployed in complex natural
scenarios. The result is shown in Table 5.

Note that, We use the high resolution to test IC15 and
IC17-MLT because there are so many small texts in these
two datasets.

4.5. Speed Analyze

As shown in Table 6, PSENet can fast detect curve text
instance. ResNet50 and ResNet18 are adopted as the back-

7



(a) ICDAR 2015 (b) ICDAR 2017 MLT (d) CTW1500(c) Total-Text

PSENet CTD+TLOC

Figure 7. Detection results on three benchmarks and several representative comparisons of curve texts on CTW1500. More examples are
provided in the supplementary materials.

Method Ext IC17-MLT
P R F

linkage-ER-Flow [1] 44.48 25.59 32.49
TH-DL [1] 67.75 34.78 45.97

TDN SJTU2017 [1] 64.27 47.13 54.38
SARI FDU RRPN v1 [1] 71.17 55.50 62.37

SCUT DLVClab1 [1] 80.28 54.54 64.96
Lyu et al. [27] X 83.8 55.6 66.8

PSENet (ResNet50) - 73.77 68.21 70.88
PSENet (ResNet152) - 75.35 69.18 72.13

Table 5. The single-scale results on IC17-MLT. “P”, “R” and “F”
represent the precision, recall and F-measure respectively. “Ext”
indicates external data.

bone to trade off the speed and accuracy. We specially ana-
lyze the time consumption of PSENet in different stages.
When the output feature map is 1/1 of the input image,
PSENet obtains the best performance, while the time con-
sumption of PSE is more than half of the total inference time
because of the larger feature map. If the size of output fea-
ture map is 1/4 of the input images, the FPS of PSENet can
be boosted from 3.9 to 8.4, while the performance slightly
decrease from 84.84% to 82.09%, which is shown in Ta-
ble 2. We can see the time consumption of PSE is less than
1/10 of total inference time. Furthermore, when we scale
the long edge of 640, the FPS is further pushed to 22 and
the detector still has good performance (75.6%).

When we use ResNet 18 as the backbone, the speed of
PSENet is nearly real-time (27 FPS), while the performance
is still competitive. Note that the PSENet(ResNet18) does
not use external data to pretrain. Combined with Table 2,
we can find PSENet surpasses EAST and CTD+TLOC in
both speed and performance.

All of the above experiments are tested on CTW1500
test set. We evaluate all test images and calculate the aver-
age speed. We scale the long edge of {1280, 960, 640} as
input to test the speed. All results in Table 6 are tested by
PyTorch [30] and one 1080Ti GPU.

Method Res F Time consumption FPSbackbone(ms) head(ms) PSE(ms)
PSENet-1s (ResNet50) 1280 82.2 50 68 145 3.9
PSENet-4s (ResNet50) 1280 79.9 50 60 10 8.4
PSENet-4s (ResNet50) 960 78.33 33 35 9 13
PSENet-4s (ResNet50) 640 75.6 18 20 8 21.65

PSENet-4s† (ResNet18) 960 74.30 10 17 10 26.75

Table 6. Time consumption of PSENet on CTW-1500. The total
time is consist of backbone, head of segmentation and PSE part. †
indicates training from scratch. “Res” represents the resolution of
the input image. “F” represent the F-measure.

5. Conclusion and Future Work
We propose a novel Progressive Scale Expansion Net-

work (PSENet) to successfully detect the text instances with
arbitrary shapes in the natural scene images. By gradually
expanding the detected areas from small kernels to large
and complete instances via multiple semantic segmentation
maps, our method is robust to shapes and can easily sepa-
rate those text instances which are very close or even par-
tially intersected. The experiments on scene text detection
benchmarks demonstrate the superior performance of the
proposed method.

There are multiple directions to explore in the future.
Firstly, we will investigate whether the expansion algorithm
can be trained along with the network end-to-end. Secondly,
the progressive scale expansion algorithm can be introduced
to the general instance-level segmentation tasks, especially
in those benchmarks with many crowded object instances.
We are cleaning our codes and will release them soon.

6. Acknowledgment
This work is supported by the Natural Science Founda-

tion of China under Grant 61672273 and Grant 61832008,
the Science Foundation for Distinguished Young Scholars
of Jiangsu under Grant BK20160021, and Scientific Foun-
dation of State Grid Corporation of China (Research on Ice-
wind Disaster Feature Recognition and Prediction by Few-
shot Machine Learning in Transmission Lines).

8



7. Supplementary Materials for Shape Robust
Text Detection with Progressive Scale Ex-
pansion Network

7.1. The Advantage of Multiple Kernels

Multiple kernels is used to reconstruct the closely text in-
stances smoothly when their sizes have large gap. As shown
in Fig. 8, there are some flaws in 2-kerenl reconstruction,
and this problem is alleviated when the number of kernels
increasing (see 3-kernel reconstruction). In addition, the
time complexity of progressive scale expansion algorithm
(PSE) is O(W ×H)1, where W ×H is the size of output.
Thus, the increasement of kernel number have no influence
on the time cost of PSE. Consequently, it is a good manner
to use multiple kernels to reconstruct the text instances.

7.2. Applying PSENet on Other Semantic Segmen-
tation Framework

The proposed PSENet consists of two key points: ker-
nel mechanism and PSE. Both of them are easy to be ap-
plied on other semantic segmentation frameworks. Here,
we implement PSENet-like method based on a widely used
semantic segmentation framework PSPNet [41], and evalu-
ate it on CTW1500. We detailly compare the PSENet-like
method based on PSPNet with the original PSENet in Ta-
ble 7. We can find the method based on PSPNet can also
achieve competitive performance on the curve text dataset.
However, compared with the original PSENet, the PSPNet-
based method need more GPU memory (3.7G vs 2.9G) and
have lower forward speed (289ms vs 118ms), which indi-
cates that the original PSENet is more suitable to text de-
tection.

7.3. More Comparisons on CTW1500

To demonstrate the power of PSENet on complex curve
text detection, we implement the state-of-the-art and open
source 2 method CTD-TLOC, and make detail comparisons
between PSENet and CTD-TLOC on CTW1500. The com-
parisons are shown in Fig. 9, 10. It is interesting and amaz-
ing to find that in Fig. 9, our proposed PSENet is able to
locate several text instances where the groundtruth labels
are even unmarked. This highly proves that our method is
quite robust due to its strong learning representation and
distinguishing ability. Fig. 10 demonstrate more examples
where PSENet can not only detect the curve text instances
even with extreme curvature, but also separate those close
text instances in a good manner.

1To reduce time complexity, we set the end pixels of the ith expansion
as the start pixels of the (i+ 1)th expansion.

2https://github.com/Yuliang-Liu/Curve-Text-Detector

Ground Truth

3-Kernel Reconstruction

2-Kernel Reconstruction

Minimal Scale Kernels

Figure 8. The difference of 2-kernel reconstruction and 3-kernel
reconstruction.

Method Mem (G) F Time consumption (ms) FPSForward PSE
PSENet-1s (ResNet50) 2.9 77.98 118 145 3.9

PSPNet [41] + PSE-1s (ResNet50) 3.7 77.25 289 145 2.3

Table 7. Time consumption of PSENet-like method based on PSP-
Net and original PSENet. Both of them are trained from scratch.
Mem means GPU memory. F means F-measure. 1s means the size
of output map is equal to input image.

7.4. More Detected Examples on Total Text, ICDAR
2015 and ICDAR 2017 MLT

In this section, we demonstrate more test examples pro-
duced by the proposed PSENet in Fig. 11 (Total Text),
Fig. 12 (ICDAR 2015) and Fig. 13 (ICDAR 2017 MLT).
From these results, it can be easily observed that with the
proposed kernel-based framework and PSE, our method
is able to archive the following points: 1) locating the
arbitrary-shaped text instances precisely; 2) separating the
closely adjacent text instances well; 3) detecting the text
instances with various orientations; 4) detecting the multi-
Lingual text. Meanwhile, thanks to the strong feature rep-
resentation, PSENet can as well locate the text instances
with complex and unstable illumination, different colors
and variable scales.

References

[1] Icdar2017 competition on multi-lingual scene text detection
and script identification. http://rrc.cvc.uab.es/
?ch=8&com=introduction.

[2] Chee Kheng Ch’ng and Chee Seng Chan. Total-text: A com-
prehensive dataset for scene text detection and recognition.
In ICDAR, 2017.

[3] Pieter-Tjerk De Boer, Dirk P Kroese, Shie Mannor, and
Reuven Y Rubinstein. A tutorial on the cross-entropy
method. Annals of Operations Research, 2005.

[4] Dan Deng, Haifeng Liu, Xuelong Li, and Deng Cai. Pix-
ellink: Detecting scene text via instance segmentation. In
AAAI, 2018.

[5] Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li,
and Li Fei-Fei. Imagenet: A large-scale hierarchical image
database. In CVPR, 2009.

[6] Xavier Glorot, Antoine Bordes, and Yoshua Bengio. Deep
sparse rectifier neural networks. In ICAIS, 2011.

9

http://rrc.cvc.uab.es/?ch=8&com=introduction
http://rrc.cvc.uab.es/?ch=8&com=introduction


[7] Ankush Gupta, Andrea Vedaldi, and Andrew Zisserman.
Synthetic data for text localisation in natural images. In
CVPR, 2016.

[8] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun.
Delving deep into rectifiers: Surpassing human-level perfor-
mance on imagenet classification. In ICCV, 2015.

[9] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun.
Deep residual learning for image recognition. In CVPR,
2016.

[10] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun.
Identity mappings in deep residual networks. In ECCV,
2016.

[11] Pan He, Weilin Huang, Tong He, Qile Zhu, Yu Qiao, and
Xiaolin Li. Single shot text detector with regional attention.
In ICCV, 2017.

[12] Wenhao He, Xu-Yao Zhang, Fei Yin, and Cheng-Lin Liu.
Deep direct regression for multi-oriented scene text detec-
tion. ICCV, 2017.

[13] Han Hu, Chengquan Zhang, Yuxuan Luo, Yuzhuo Wang,
Junyu Han, and Errui Ding. Wordsup: Exploiting word an-
notations for character based text detection. In ICCV, 2017.

[14] Gao Huang, Zhuang Liu, Kilian Q Weinberger, and Laurens
van der Maaten. Densely connected convolutional networks.
In CVPR, 2017.

[15] Sergey Ioffe and Christian Szegedy. Batch normalization:
Accelerating deep network training by reducing internal co-
variate shift. arXiv preprint arXiv:1502.03167, 2015.

[16] Yingying Jiang, Xiangyu Zhu, Xiaobing Wang, Shuli Yang,
Wei Li, Hua Wang, Pei Fu, and Zhenbo Luo. R2cnn: rota-
tional region cnn for orientation robust scene text detection.
arXiv preprint arXiv:1706.09579, 2017.

[17] Dimosthenis Karatzas, Lluis Gomez-Bigorda, Anguelos
Nicolaou, Suman Ghosh, Andrew Bagdanov, Masakazu Iwa-
mura, Jiri Matas, Lukas Neumann, Vijay Ramaseshan Chan-
drasekhar, Shijian Lu, et al. Icdar 2015 competition on robust
reading. In ICDAR, 2015.

[18] Yann LeCun, Léon Bottou, Yoshua Bengio, and Patrick
Haffner. Gradient-based learning applied to document recog-
nition. Proceedings of the IEEE, 1998.

[19] Minghui Liao, Baoguang Shi, Xiang Bai, Xinggang Wang,
and Wenyu Liu. Textboxes: A fast text detector with a single
deep neural network. In AAAI, 2017.

[20] Minghui Liao, Zhen Zhu, Baoguang Shi, Gui-song Xia, and
Xiang Bai. Rotation-sensitive regression for oriented scene
text detection. In CVPR, 2018.

[21] Tsung-Yi Lin, Piotr Dollár, Ross Girshick, Kaiming He,
Bharath Hariharan, and Serge Belongie. Feature pyramid
networks for object detection. In CVPR, 2017.

[22] Wei Liu, Dragomir Anguelov, Dumitru Erhan, Christian
Szegedy, Scott Reed, Cheng-Yang Fu, and Alexander C
Berg. Ssd: Single shot multibox detector. In ECCV, 2016.

[23] Xuebo Liu, Ding Liang, Shi Yan, Dagui Chen, Yu Qiao, and
Junjie Yan. Fots: Fast oriented text spotting with a unified
network. arXiv preprint arXiv:1801.01671, 2018.

[24] Yuliang Liu, Lianwen Jin, Shuaitao Zhang, and Sheng
Zhang. Detecting curve text in the wild: New dataset and
new solution. 2017.

[25] Jonathan Long, Evan Shelhamer, and Trevor Darrell. Fully
convolutional networks for semantic segmentation. In
CVPR, 2015.

[26] Shangbang Long, Jiaqiang Ruan, Wenjie Zhang, Xin He,
Wenhao Wu, and Cong Yao. Textsnake: A flexible repre-
sentation for detecting text of arbitrary shapes. ECCV, 2018.

[27] Pengyuan Lyu, Cong Yao, Wenhao Wu, Shuicheng Yan,
and Xiang Bai. Multi-oriented scene text detection via cor-
ner localization and region segmentation. arXiv preprint
arXiv:1802.08948, 2018.

[28] Jianqi Ma, Weiyuan Shao, Hao Ye, Li Wang, Hong Wang,
Yingbin Zheng, and Xiangyang Xue. Arbitrary-oriented
scene text detection via rotation proposals. IEEE Transac-
tions on Multimedia, 2018.

[29] Fausto Milletari, Nassir Navab, and Seyed-Ahmad Ahmadi.
V-net: Fully convolutional neural networks for volumetric
medical image segmentation. In IC3DV, 2016.

[30] Adam Paszke, Sam Gross, Soumith Chintala, Gregory
Chanan, Edward Yang, Zachary DeVito, Zeming Lin, Al-
ban Desmaison, Luca Antiga, and Adam Lerer. Automatic
differentiation in pytorch. 2017.

[31] Shaoqing Ren, Kaiming He, Ross Girshick, and Jian Sun.
Faster r-cnn: Towards real-time object detection with region
proposal networks. In NIPS, 2015.

[32] Baoguang Shi, Xiang Bai, and Serge Belongie. Detect-
ing oriented text in natural images by linking segments. In
CVPR, 2017.

[33] Baoguang Shi, Xiang Bai, and Cong Yao. An end-to-end
trainable neural network for image-based sequence recogni-
tion and its application to scene text recognition. IEEE trans-
actions on pattern analysis and machine intelligence, 2017.

[34] Abhinav Shrivastava, Abhinav Gupta, and Ross Girshick.
Training region-based object detectors with online hard ex-
ample mining. In CVPR, 2016.

[35] Ilya Sutskever, James Martens, George Dahl, and Geoffrey
Hinton. On the importance of initialization and momentum
in deep learning. In ICML, 2013.

[36] Zhi Tian, Weilin Huang, Tong He, Pan He, and Yu Qiao. De-
tecting text in natural image with connectionist text proposal
network. In ECCV, 2016.

[37] Bala R Vatti. A generic solution to polygon clipping. Com-
munications of the ACM, 1992.

[38] Enze Xie, Yuhang Zang, Shuai Shao, Gang Yu, Cong Yao,
and Guangyao Li. Scene text detection with supervised
pyramid context network. arXiv preprint arXiv:1811.08605,
2018.

[39] Cong Yao, Xiang Bai, Nong Sang, Xinyu Zhou, Shuchang
Zhou, and Zhimin Cao. Scene text detection via holistic,
multi-channel prediction. arXiv preprint arXiv:1606.09002,
2016.

[40] Zheng Zhang, Chengquan Zhang, Wei Shen, Cong Yao,
Wenyu Liu, and Xiang Bai. Multi-oriented text detection
with fully convolutional networks. In CVPR, 2016.

[41] Hengshuang Zhao, Jianping Shi, Xiaojuan Qi, Xiaogang
Wang, and Jiaya Jia. Pyramid scene parsing network. CVPR,
2017.

10



[42] Zhuoyao Zhong, Lianwen Jin, Shuye Zhang, and Ziyong
Feng. Deeptext: A unified framework for text proposal gen-
eration and text detection in natural images. arXiv preprint
arXiv:1605.07314, 2016.

[43] Xinyu Zhou, Cong Yao, He Wen, Yuzhi Wang, Shuchang
Zhou, Weiran He, and Jiajun Liang. East: an efficient and ac-
curate scene text detector. arXiv preprint arXiv:1704.03155,
2017.

11



CTD+TLOCOriginal Image Ground Truth PSENet (ours)

Figure 9. Comparisons on CTW1500. The proposed PSENet produces several detections that are even missed by the groundtruth labels.

PSENet (ours)Original Image CTD+TLOCGround Truth

Figure 10. Comparisons on CTW1500.

12



Figure 11. Test examples on Total Text produced by PSENet.

Figure 12. Test examples on ICDAR 2015 produced by PSENet.

13



Figure 13. Test examples on ICDAR 2017 MLT produced by PSENet.

14


