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Abstract
Surface-based geodesic topology provides strong cues

for object semantic analysis and geometric modeling. How-
ever, such connectivity information is lost in point clouds.
Thus we introduce GeoNet, the first deep learning archi-
tecture trained to model the intrinsic structure of surfaces
represented as point clouds. To demonstrate the applica-
bility of learned geodesic-aware representations, we pro-
pose fusion schemes which use GeoNet in conjunction with
other baseline or backbone networks, such as PU-Net and
PointNet++, for down-stream point cloud analysis. Our
method improves the state-of-the-art on multiple represen-
tative tasks that can benefit from understandings of the un-
derlying surface topology, including point upsampling, nor-
mal estimation, mesh reconstruction and non-rigid shape
classification.

1. Introduction

Determining neighborhood relationship among points in a
point cloud, known as topology estimation, is an important
problem since it indicates the underlying point cloud struc-
ture, which could further reveal the point cloud semantics
and functionality. Consider the red inset in Fig. 1: the two
clusters of points, though seemingly disconnected, should
indeed be connected to form a chair leg, which supports the
whole chair. On the other hand, the points on opposite sides
of a chair seat, though spatially very close to each other,
should not be connected to avoid confusing the sittable up-
per surface with the unsittable lower side. Determining such
topology appears to be a very low-level endeavor but in real-
ity it requires global, high-level knowledge, making it a very
challenging task. Still, from the red inset in Fig. 1, we could
draw the conclusion that the two stumps are connected only
after we learn statistical regularities from a large number
of point clouds and observe many objects of this type with
connected elongated vertical elements extending from the
body to the ground. This motivates us to adopt a learning
approach to capture the topological structure within point
clouds.

Our primary goals in this paper are to develop represen-
tations of point cloud data that are informed by the under-

Figure 1. Our method takes a point cloud as input, and outputs rep-
resentations used for multiple tasks including upsampling, normal
estimation, mesh reconstruction, and shape classification.

lying surface topology as well as object geometry, and pro-
pose methods that leverage the learned topological features
for geodesic-aware point cloud analysis. The representa-
tion should capture various topological patterns of a point
cloud and the method of leveraging these geodesic features
should not alter the data stream, so our representation can
be learned jointly and used in conjunction with the state-of-
the-art baseline or backbone models (e.g. PU-Net, Point-
Net++ [37, 27, 28]) that feed the raw data through, with no
information loss to further stages of processing.

For the first goal, we propose a geodesic neighborhood
estimation network (GeoNet) to learn deep geodesic repre-
sentations using the ground truth geodesic distance as su-
pervision signals. As illustrated in Fig. 2, GeoNet consists
of two modules: an autoencoder that extracts a feature vec-
tor for each point and a geodesic matching (GM) layer that
acts as a learned kernel function for estimating geodesic
neighborhoods using the latent features. Due to the super-
vised geodesic training process, intermediates features of
the GM layer contain rich information of the point cloud
topology and intrinsic surface attributes. We note that the
representation, while trained on geodesic distances, does
not by construction produce geodesics (e.g. symmetry, tri-
angle inequality, etc.). The goal of the representation is to
inform subsequent stages of processing of the global geom-
etry and topology, and is not to conduct metric computa-
tions directly.

For the second task, as shown in Fig. 3, we propose
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geodesic fusion schemes to integrate GeoNet into the state-
of-the-art network architectures designed for different tasks.
Specifically, we present PU-Net fusion (PUF) for point
cloud upsampling, and PointNet++ fusion (POF) for normal
estimation, mesh reconstruction as well as non-rigid shape
classification. Through experiments, we demonstrate that
the learned geodesic representations from GeoNet are bene-
ficial for both geometric and semantic point cloud analyses.

In summary, in this paper we propose an approach for
learning deep geodesic-aware representations from point
clouds and leverage the results for various point set anal-
yses. Our contributions are:

• We present, to the best of our knowledge, the first deep
learning method, GeoNet, that ingests point clouds and
learns representations which are informed by the in-
trinsic structure of the underlying point set surfaces.

• To demonstrate the applicability of learned geodesic
representations, we develop network fusion architec-
tures that incorporate GeoNet with baseline or back-
bone networks for geodesic-aware point set analysis.

• Our geodesic fusion methods are benchmarked on
multiple geometric and semantic point set tasks using
standard datasets and outperform the state-of-the-art
methods.

2. Related work

We mainly review traditional graph-based methods for
geodesic distance computation, as well as general works on
point cloud upsampling, normal estimation, and non-rigid
shape classification, as we are unaware of other prior works
on point cloud-based deep geodesic representation learning.

Geodesic distance computation. There are two types
of methods: some allow the path to traverse mesh faces [30,
26, 6, 12, 32, 35, 7] for accurate geodesic distance compu-
tation, while others find approximate solutions via shortest
path algorithms constrained on graph edges [10, 11, 19].
For the first type, an early method [30] suggests a polyno-
mial algorithm of time O(n3logn) where n is the number
of edges, but their method is restricted to a convex poly-
tope. Based on Dijkstra’s algorithm [10], [26] improves
the time complexity to O(n2logn) and extends the method
to an arbitrary polyhedral surface. Later, [6] proposes an
O(n2) approach using a set of windows on the polyhedron
edges to encode the structure of the shortest path set. By
filtering out useless windows, [35] further speeds up the al-
gorithm. Then [7] introduces a heat method via solving a
pair of standard linear elliptic problems. As for graph edge-
based methods, typical solutions include Dijkstra’s [10],
Floyd-Warshall [11] and Johnson’s algorithms [19], which

have much lower time complexity than the surface travers-
ing methods. For a 20000-vertex mesh, computing its all-
pair geodesic distances can take several days using [35]
while [19] only uses about 1 minute on CPU. When a mesh
is dense, the edge-constrained shortest path methods gen-
erate low-error geodesic estimates. Thus in our work, we
apply [19] to compute the ground truth geodesic distance.

Point upsampling. Previous methods can be summa-
rized into two categories. i) Optimization based meth-
ods [1, 23, 18], championed by [1], which interpolates a
dense point set from vertices of a Voronoi diagram in the
local tangent space. Then [23] proposes a locally opti-
mal projection (LOP) operator for point cloud resampling
and mesh reconstruction leveraging an L1 median. For im-
proving robustness to point cloud density variations, [18]
presents a weighted LOP. These methods all make strong
assumptions, such as surface smoothness, and are not data-
driven, and therefore have limited applications in practice.
ii) Deep learning based methods. To apply the (graph) con-
volution operation, many of those methods first voxelize a
point cloud into regular volumetric grids [34, 33, 16, 8] or
instead use a mesh [9, 36]. While voxelization introduces
discretization artifacts and generates low resolution voxels
for computational efficiency, mesh data can not be trivially
reconstructed from a sparse and noisy point cloud. To di-
rectly upsample a point cloud, PU-Net [37] learns multi-
level features for each point and expands the point set via
a multibranch convolution unit implicitly in feature space.
But PU-Net is based on Euclidean space and thus does not
leverage the underlying point cloud surface attributes in
geodesic space, which we show in this paper are important
for upsampling.

Normal estimation. A widely used method for point
cloud normal estimation is to analyze the variance in a tan-
gential plane of a point and find the minimal variance direc-
tion by Principal Component Analysis (PCA) [17, 20]. But
this method is sensitive to the choice of the neighborhood
size, namely, large regions can cause over-smoothed sur-
faces and small ones are sensitive to noises. To improve ro-
bustness, methods based on fitting higher-order shapes have
been proposed [13, 4, 2]. However, these methods require
careful parameter tuning at the inference time and only es-
timate normal orientation up to sign. Thus, so far robust es-
timation for oriented normal vectors using traditional meth-
ods is still challenging, especially across different noise lev-
els and shape structures. There are only few data-driven
methods that are able to integrate normal estimation and
orientation alignment into a unified pipeline [14, 28]. They
take a point cloud as input and directly regress oriented nor-
mal vectors, but these methods are not designed to learn
geodesic topology-based representations that capture the in-
trinsic surface features for better normal estimation.

Non-rigid shape classification. Classifying the point



Figure 2. GeoNet: geodesic neighborhood estimation network.

cloud of non-rigid objects often consists of two steps: ex-
tracting intrinsic features in geodesic space and applying
a classifier (e.g. SVM, MLP, etc.). Some commonly
used features include wave kernel signatures [3], heat ker-
nel signatures [31], spectral graph wavelet signatures [25],
Shape-DNA [29], etc. For example [24] uses geodesic mo-
ments and stacked sparse autoencoders to classify non-rigid
shapes, such as cat, horse, spider, etc. The geodesic mo-
ments are feature vectors derived from the integral of the
geodesic distance on a shape, while stacked sparse autoen-
coders are deep neural networks consisting of multiple lay-
ers of sparse autoencoders. However, the above methods
all require knowing graph-based data, which is not avail-
able from widely used sensors (e.g. depth camera, Lidar,
etc.) for 3D data acquisition. Though PointNet++ [28] is
able to directly ingest a point cloud and conduct classifica-
tion, it is not designed to model the geodesic topology of
non-rigid shapes and thus its performance is inferior to tra-
ditional two-step methods which heavily reply on the offline
computed intrinsic surface features.

3. Method

3.1. Problem Statement

χ = {xi} denotes a point set with xi ∈ Rd and
i = 1, . . . , N . Although the problem and the method de-
veloped are general, we focus on the case d = 3 using
only Euclidean coordinates as input. A neighborhood sub-
set within radius r from a point xi is denoted Br(xi) =
{xj |dE(xi, xj) ≤ r} where dE(xi, xj) ∈ R is the Eu-
clidean (embedding) distance between xi and xj . The cardi-
nality ofBr(xi) isK. The corresponding geodesic distance
set around xi is called Gr(xi) = {gij = dG(xi, xj)|xj ∈
Br(xi)} where dG ∈ R means the geodesic distance. Our
goal is to learn a function f : xi 7→ Gr(xi) that maps
each point to (an approximation of) the geodesic distance
set Gr(xi) around it.

3.2. Method

We introduce GeoNet, a network trained to learn the
function f defined above. It consists of an autoencoder
with skip connections, followed by a multi-scale Geodesic
Matching (GM) layer, leveraging latent space features
{ψ(xi)} ⊆ R3+C of the point set. GeoNet is trained
in a supervised manner using ground truth geodesic dis-

tances between points in the set χ. To demonstrate the ap-
plicability of learned deep geodesic-aware representations
from GeoNet, we test our approach on typical tasks that
require understandings of the underlying surface topology,
including point cloud upsampling, surface normal estima-
tion, mesh reconstruction, and non-rigid shape classifica-
tion. To this end, we leverage the existing state-of-the-
art network architectures designed for the aforementioned
problems. Specifically, we choose PU-Net as the base-
line network for point upsampling and PointNet++ for other
tasks. The proposed geodesic fusion methods, called PU-
Net fusion (PUF) and PointNet++ fusion (POF), integrate
GeoNet with the baseline or backbone models to conduct
geodesic-aware point set analysis.

3.3. Geodesic Neighborhood Estimation

As illustrated in Fig. 2, GeoNet consists of two modules:
an autoencoder that extracts a feature vector ψ(xi) for each
point xi ∈ χ and a GM layer that acts as a learned geodesic
kernel function for estimating Gr(xi) using the latent fea-
tures.

Feature Extraction. We use a variant of PointNet++,
which is a point set based hierarchical and multi-scale func-
tion, for feature extraction. It maps an input point set χ
to a feature set {ϕ(xi)|xi ∈ χ̃} where ϕ(xi) ∈ R3+C̃ is
a concatenation of the xyz coordinates and the C̃ dimen-
sional embedding of xi, and χ̃ is a sampled subset of χ by
farthest-point sampling. To recover features {ψ(xi)} for the
point cloud χ, we use a decoder with skip connections. The
decoder consists of recursively applied tri-linear feature in-
terpolators, shared fully connected (FC) layers, ReLU and
Batch Normalization. The resulting (N, 3 + C) tensor is
then fed into the GM layer for geodesic neighborhood esti-
mation.

Geodesic Matching. We group the latent features ψ(xi)
into neighborhood feature sets Frl(xi) = {ψ(xj)|xj ∈
Brl(xi)}, under multiple radius scales rl. At each scale
rl we set a maximum number of neighborhood points Kl,
and thus produce a tensor of dimension (N,Kl, 3+C). The
grouped features, together with the latent features, are sent
to a geodesic matching module, where ψ(xi) is concate-
nated with ψ(xj) for every xj ∈ Brl(xi). The resulting
feature ξij ∈ R3+2C becomes the input to a set of shared
FC layers with ReLU, Batch Normalization and Dropout.



Figure 3. PU-Net (top) and PointNet++ (bottom) geodesic fusion architectures.

As demonstrated in [15], the multilayer perceptron (MLP)
acts as a kernel function that maps ξij to an approxima-
tion of the geodesic distance, ĝij . Finally, the GM layer
yieldsGrl(xi) for each point of the input point cloud χ. We
use a multi-scale L1 loss Lgeo =

∑
l Lgeol to compare the

ground truth geodesic distances to their estimates:

Lgeol =
∑
xi∈χ

∑
xj∈Brl

(xi)

|gij − ĝ(xi, xj)|
NKl

(1)

3.4. Geodesic Fusion

To demonstrate how the learned geodesic representations
can be used for point set analysis, we propose fusion meth-
ods based on the state-of-the-art (SOTA) network archi-
tectures for different tasks. For example, PU-Net is the
SOTA upsampling method and thus we propose PUF that
uses PU-Net as the baseline network to conduct geodesic
fusion for point cloud upsampling. With connectivity infor-
mation provided by the estimated geodesic neighborhoods,
our geodesic-fused upsampling network can better recover
topological details, such as curves and sharp structures, than
PU-Net. We also present POF leveraging PointNet++ as the
fusion backbone, and demonstrate its effectiveness on both
geometric and semantic tasks where PointNet++ shows the
state-of-the-art performance.

PU-Net Geodesic Fusion. A PUF layer, as illustrated
in Fig. 3 (top), takes a (N, d) point set as input and sends
it into two branches: one is a multi-scale Euclidean group-
ing layer, and the other is GeoNet. At each neighborhood
scale rl, the grouped point set Brl(xi) is fused with the es-
timated geodesic neighborhood Grl(xi) to yield Srl(xi) =
{(xj , gij)|xj ∈ Brl(xi)} with (xj , gij) ∈ Rd+1. Then the

(N,Kl, d+ 1) fused tensor is fed to a PointNet to generate
a (N,Cl) feature tensor which will be stacked with features
from other neighborhood scales. The remaining layers are
from PU-Net. As indicated by the red rectangles in Fig. 3,
the total loss has two weighted terms:

L = Lgeo + λLtask (2)

where Lgeo is for GeoNet training (1), λ is a weight and
Ltask, in general, is the loss for the current task that we are
targeting. In this case, the goal is point cloud upsampling:
Ltask = Lup(θ) where θ indicates network parameters.
PUF upsampling takes a randomly distributed sparse point
set χ as input and generates a uniformly distributed dense
point cloud P̂ ⊆ R3. The upsampling factor is α = |P |

|χ| :

Lup(θ) = LEMD(P, P̂ ) + λ1Lrep(P̂ ) + λ2 ‖θ‖2 (3)

in which the first term is the Earth Mover Distance (EMD)
between the upsampled point set P̂ and the ground truth
dense point cloud P :

LEMD(P, P̂ ) = min
φ:P̂→P

∑
pi∈P̂

‖pi − φ(pi)‖2 (4)

where φ : P̂ → P indicates a bijection mapping.
The second term in (3) is a repulsion loss which pro-

motes a uniform spatial distribution for P̂ by penalizing
close point pairs:

Lrep(P̂ ) =
∑
pi∈P̂

∑
pj∈P̃i

η(‖pi − pj‖)ω(‖pi − pj‖) (5)



Figure 4. Representative results of geodesic neighborhood estimation. Red dots indicate the reference point and stars represent target points
selected for the purpose of illustration. Points in dark-purple are closer to the reference point than those in bright-yellow. Shortest paths
between the reference point and the target point in euclidean space are colored in sky-blue. Topology-based geodesic paths are in pink.

K-3 K-6 K-12 Euc GeoNet

v1
r 6 0.1 8.75 8.97 9.04 9.06 5.67
r 6 0.2 16.22 17.33 17.90 18.16 9.25
r 6 0.4 15.15 16.80 17.88 18.95 9.75

v2
r 6 0.1 11.71 11.49 11.55 11.57 7.06
r 6 0.2 19.22 17.76 18.28 18.56 9.74
r 6 0.4 21.03 17.19 18.20 19.44 10.04

v3
r 6 0.1 13.28 14.23 14.62 14.78 10.86
r 6 0.2 14.85 17.27 18.54 19.49 13.61
r 6 0.4 13.48 16.10 17.72 19.68 14.73

Table 1. Neighborhood geodesic distance estimation MSE (x100)
on the heldout ShapeNet training-category samples. We com-
pare with KNN-Graph based shortest path methods under different
choices of K values. Euc represents the difference between Eu-
clidean distance and geodesic distance. MSE(s) are reported under
multiple radius ranges r. v1 takes uniformly distributed point sets
with 512 points as input, and v2 uses randomly distributed point
clouds. v3 is tested using point clouds that have 2048 uniformly
distributed points.

K-3 K-6 K-12 Euc GeoNet

v1 r 6 0.1 8.81 9.01 9.05 9.06 7.52
r 6 0.2 11.84 12.88 13.49 13.75 11.44

v2 r 6 0.1 10.52 10.21 10.25 10.26 8.94
r 6 0.2 15.02 12.99 13.59 13.86 11.69

v3 r 6 0.1 11.82 12.39 12.65 12.75 10.88
r 6 0.2 11.80 12.84 13.55 14.50 12.26

Table 2. Geodesic neighborhood estimation MSE (x100) on the
leftout ShapeNet categories. v1 takes uniformly distributed point
sets with 512 points as input, and v2 uses randomly distributed
point clouds. v3 is tested using point clouds that have 2048 uni-
formly distributed points.

where P̃i is a set of k-nearest neighbors of pi, η(r) = −r
penalizes close pairs (pi, pj), and ω(r) = e−r

2/h2

is a fast-
decaying weight function with some constant h [18, 23].

PointNet++ Geodesic Fusion. Fig. 3 (bottom) illus-
trates the PointNet++ based fusion pipeline. Due to task
as well as architecture differences between PU-Net and
PointNet++, we make following changes to PUF to de-
sign a suitable fusion strategy that leverages PointNet++.
First, for multi-scale grouping, we use the learned geodesic
neighborhoods Ĝr(xi) instead of Euclidean ones. Geodesic
grouping brings attention to the underlying surfaces as well
as structures of the point cloud. Second, while the PUF
layer fuses estimated Ĝr(xi) = {ĝij = d̂G(xi, xj)|xj ∈
Br(xi)}, where ĝij ∈ R, of each neighborhood point set
Br(xi) into the backbone network, the POF layer uses the
latent geodesic-aware features ξ̃ij ∈ RC̃ extracted from the
second-to-last FC layer in GeoNet. Namely, ξ̃ij is an inter-
mediate high-dimensional feature vector from ξij to ĝij via
FC layers, and therefore it is better informed of the intrin-
sic point cloud topology. Third, in PointNet++ fusion we
apply the POF layer in a hierarchical manner, leveraging
farthest-point sampling. Thus, the learned features encode
both local and global structural information of the point set.
The total loss for POF also has two parts: One is for GeoNet
training and the other is for the task-at-hand. We experiment
on representative tasks that can benefit from understandings
of the topological surface attributes. We use the L1 error for
point cloud normal estimation:

Lnormal =
∑
xi∈χ

3∑
j=1

∣∣∣n(j)i − n̂(xi)(j)∣∣∣
3N

(6)

in which ni ∈ R3 is the ground truth unit normal vector of
xi, and n̂(xi) ∈ R3 is the estimated normal. We then use
the normal estimation to generate mesh via Poisson surface
reconstruction [21]. To classify point clouds of non-rigid
objects, we use cross-entropy loss:



Figure 5. Point cloud upsampling comparisons with PU-Net. The input point clouds have 512 points with random distributions and the
upsampled point clouds have 2048 points. Red insets show details of the corresponding dashed region in the reconstruction.

Lcls = −
S∑
c=1

yclog(pc(χ)) (7)

where S is the number of non-rigid object categories, and c
is class label; yc ∈ {0, 1} is a binary indicator, which takes
value 1 if class label c is ground truth for the input point set.
pc(χ) ∈ R is the predicted probability w.r.t. class c of the
input point set.

3.5. Implementation

For GeoNet training, the multiscale loss Lgeol is en-
forced at three radius ranges: 0.1, 0.2 and 0.4. We use
Adam [22] with learning rate 0.001 and batchsize 3 for 8
epochs. To train the geodesic fusion networks, we set the
task term weight λ as 1, and use Adam with learning rate
0.0001 and batchsize 2 for around 300 to 1500 epochs de-
pending on the task and the dataset. Source code in Tensor-
flow will be made available upon completion of the anony-
mous review process.

4. Experiments
We put GeoNet to the test by estimating point cloud

geodesic neighborhoods. To demonstrate the applicabil-
ity of learned deep geodesic-aware representations, we also
conduct experiments on down-stream point cloud tasks such
as point upsampling, normal estimation, mesh reconstruc-
tion and non-rigid shape classification.

4.1. Geodesic Neighborhood Estimation

In Tab. 1 (v1) we show geodesic distance set, Gr(xi),
estimation results on the ShapeNet dataset [5] using point
clouds with 512 uniformly distributed points. Mean-
squared errors (MSE) are reported under multiple radius

Figure 6. Top-k mean square error (MSE) of upsampled points that
have large errors, for both the heldout training-category samples
(red) and the leftout ShapeNet categories (green).

MSE EMD CD

Training PU-Net 7.14 8.06 2.72
PUF 6.23 7.62 2.46

Leftout PU-Net 12.38 11.43 3.98
PUF 9.55 8.90 3.27

Table 3. Point cloud upsampling results on both the heldout
training-category samples and the unseen ShapeNet categories.
MSE(s) (x10000) are scaled for better visualization.

scales r w.r.t. xi ∈ χ. GeoNet demonstrates consistent
improvement over the baselines. Representative results are
visualized in Fig. 4. Our method captures various topologi-
cal patterns, such as curved surfaces, layered structures, in-
ner/outer parts, etc.

Generality. We test GeoNet’s robustness under different
point set distributions and sizes. In Tab. 1 (v2) we use point
clouds with 512 randomly distributed points as input. We
also test on dense point sets that contain 2048 uniformly
distributed points in Tab. 1 (v3). Our results are robust to
different point set distributions as well as sizes. To show the
generalization performance, in Tab. 2 we report results on



Figure 7. Mesh reconstruction results on the Shrec15 (left) and the ShapeNet (right) datasets using the estimated normal by PointNet++
and our method POF. GT presents mesh reconstructed via the ground truth normal. We also visualize POF normal estimation in the fourth
and the last columns.

Figure 8. Point set normal estimation errors. Blue indicates small
errors and red is for large ones.

6 2.5◦ 6 5◦ 6 10◦ 6 15◦

PCA 6.16±0.01 14.85±0.02 27.16±0.17 34.17±0.28
PointNet++ 12.81±0.18 33.37±0.92 61.58±2.02 75.49±1.95

POF 16.26±0.30 39.02±1.09 66.98±1.46 79.66±1.21

Table 4. Point cloud normal estimation accuracy (%) on the
Shrec15 dataset under multiple angle thresholds.

6 2.5◦ 6 5◦ 6 10◦ 6 15◦

Training
PCA 5.33 10.11 18.52 24.82

PointNet++ 30.68 43.19 55.91 62.30
POF 32.04 45.02 57.52 63.62

Leftout
PCA 5.24 10.59 18.99 25.17

PointNet++ 17.35 28.82 43.26 51.17
POF 19.13 31.83 46.22 53.78

Table 5. Point cloud normal estimation accuracy (%) on the
ShapeNet dataset for both heldout training-category samples and
leftout categories.

the leftout ShapeNet categories. Our method performs bet-
ter on unseen categories, while KNN-Graph based shortest
path approaches suffer from point set distribution random-
ness, density changes and unsuitable choices of K values.

4.2. Point Cloud Upsampling

We test PUF on point cloud upsampling and present re-
sults in Tab. 3. We compare against the state-of-the-art point
set upsampling method PU-Net on three metrics: MSE,
EMD as well as the Chamfer Distance (CD). Our method
outperforms the baseline under all metrics by 9.25% av-
erage improvement on the heldout training-category sam-
ples. Since geodesic neighborhoods are better informed of
the underlying point set topology than Euclidean ones, PUF
upsampling produces less outliers and recovers more details
in Fig. 5, such as curves and sharp structures.

Generality. To analyze outlier robustness (i.e. points
with large reconstruction errors), we plot top-k MSE in
Fig. 6. Our method generates fewer outliers on both the
heldout training-category samples and the unseen cate-
gories. We also report quantitative results on the leftout
categories in Tab. 3. Again, PUF significantly surpasses the
state-of-the-art upsampling method PU-Net under three dif-
ferent evaluation metrics.

4.3. Normal Estimation and Mesh Reconstruction

For normal estimation we apply PointNet++ geodesic fu-
sion, POF, then we conduct Poisson mesh reconstruction
leveraging the estimated normals. Quantitative results for
normal estimation on the Shrec15 dataset and the ShapeNet
dataset are given in Tab. 4 and Tab. 5, respectively. We com-
pare our method with the traditional PCA algorithm as well
as the state-of-the-art deep learning method PointNet++.
Our results outperform the baselines by around 10% rela-
tive improvement. In Fig. 8, we visualize typical normal
estimation errors, showing that PointNet++ usually fails at
high-curvature and complex-surface regions. For further ev-
idence, we visualize Poisson mesh reconstruction in Fig. 7
using the estimated normals.

Generality. In Tab. 5 we evaluate normal estimation per-
formance on the leftout ShapeNet categories. Our method



Figure 9. Normal estimation and Poisson mesh reconstruction re-
sults by POF using dense point clouds with 8192 points.

Input feature Accuracy (%)
PointNet++ XYZ 73.56

POF XYZ 94.67
DeepGM Intrinsic features 93.03

Table 6. Point cloud classification of non-rigid shapes on the
Shrec15 dataset.

Gaussian Noise Level
0.8% 0.9% 1.0% 1.1% 1.2%

PointNet++ 70.54 69.27 67.83 65.66 62.38
POF 91.89 90.93 89.40 87.72 84.98

Table 7. Noisy point clouds classification accuracy (%). We add
Gaussian noise of 0.8% to 1.2% of unit ball radius.

has higher accuracy over competing methods under multi-
ple angle thresholds. Though trained with point clouds of
2048 points, POF is also tested on denser input. In Fig. 9
we take point clouds with 8192 points as input, and visual-
ize the normal estimation and mesh reconstruction results,
which shows that our method generalizes to dense point
clouds without re-training and produces fine-scaled mesh.

4.4. Non-rigid Shape Classification

Results of non-rigid shape classification are reported in
Tab. 6. While POF and PointNet++ only take point cloud-
based xyz Euclidean coordinates as input, DeepGM re-
quires offline computed intrinsic features from mesh data in
the ground truth geodesic metric space. Though using less
informative data, our method has higher classification ac-
curacy than other methods, which further demonstrates that
the proposed geodesic fusion architecture, POF, is suitable
for solving tasks that require understandings of the underly-
ing point cloud surface attributes.

Generality. We add Gaussian noise of different lev-
els to the input and conduct noisy point clouds classifica-
tion. Comparisons are shown in Tab. 7. POF outperforms
PointNet++ under several noise levels. Our method also
demonstrates better noise robustness. It shows a 10.24%
decrease in relative accuracy at the maximum noise level,

Figure 10. Failure cases of geodesic neighborhood estimation for
stick-shaped objects (e.g. rocket, knife, etc.) which have large
ratios between length and width/height. Red dots indicate the ref-
erence point. Points in dark-purple are closer to the reference point
than those in bright-yellow.

while PointNet++ decreases by up to 15.20%.

4.5. Failure Modes

Failure cases of geodesic neighborhood estimation are
shown in Fig. 10. Due to large ratios between length and
width/height, after normalizing a stick-shaped object (e.g.
rocket, knife, etc.) into a unit ball we need high precision
small values to represent its point-pair geodesic distance
along the width/height sides. Since stick-shaped objects
like rocket and knife only take up a small portion of the
training data, GeoNet tends to make mistakes for heldout
samples from these categories at inference time. We have
not found additional failure cases, and quantitative improve-
ments continue to take effect due to rich surface-based topo-
logical information learned during the geodesic-supervised
training process.

5. Conclusion

We have presented GeoNet, a novel deep learning archi-
tecture to learn the geodesic space-based topological struc-
ture within point clouds. The training process is super-
vised by the ground truth geodesic distance and therefore
the learned representations reflect the intrinsic structure of
the underlying point set surfaces. To demonstrate the ap-
plicability of such a topology estimation network, we also
propose fusion methods to incorporate GeoNet into com-
putational schemes that involve the standard backbone ar-
chitectures for point cloud analysis. Our method is tested
on both geometric and semantic tasks and outperforms the
state-of-the-art methods, including point upsampling, nor-
mal estimation, mesh reconstruction and non-rigid shape
classification.
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