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Abstract

Recent advances in deep convolutional neural networks
(CNNs) have motivated researchers to adapt CNNs to di-
rectly model points in 3D point clouds. Modeling local
structure has been proven to be important for the success of
convolutional architectures, and researchers exploited the
modeling of local point sets in the feature extraction hi-
erarchy. However, limited attention has been paid to ex-
plicitly model the geometric structure amongst points in a
local region. To address this problem, we propose Geo-
CNN, which applies a generic convolution-like operation
dubbed as GeoConv to each point and its local neighbor-
hood. Local geometric relationships among points are cap-
tured when extracting edge features between the center and
its neighboring points. We first decompose the edge fea-
ture extraction process onto three orthogonal bases, and
then aggregate the extracted features based on the angles
between the edge vector and the bases. This encourages the
network to preserve the geometric structure in Euclidean
space throughout the feature extraction hierarchy. GeoConv
is a generic and efficient operation that can be easily inte-
grated into 3D point cloud analysis pipelines for multiple
applications. We evaluate Geo-CNN on ModelNet40 and
KITTI and achieve state-of-the-art performance.

1. Introduction

With the development of popular sensors such as RGB-
D cameras and LIDAR, 3D point clouds can be easily
acquired and directly processed in many computer vision
tasks [63, 18, 37, 29, 54, 27, 15, 55, 8, 60]. Although
hand-crafted features on point clouds have been utilized for
many years, recent breakthroughs came with the develop-
ment of convolutional neural networks (CNNs) inspiring
researchers to adapt insights from 2D image analysis with
CNNs to point clouds.

One intuitive idea is to convert irregular point clouds into
regular 3D grids by voxelization [30, 62, 50, 5], which en-

x

y

z

p

q *

*

*

Decompose Aggregate

Edge Feature

Figure 1. Modeling Geometric Structure between Points via Vec-
tor Decomposition. We first decompose the edge features along
three orthogonal directions and apply direction-associated weights
to extract directional descriptions. Then we aggregate them ac-
cording to the vector’s orientation to construct compact edge fea-
tures between point p and q.

ables CNN-like operations to be applied. However, volu-
metric methods suffer from insufficient resolution, due to
sparsely-occupied 3D grids and the exponentially increas-
ing memory cost associated with making the grid finer. To
learn 3D representation at high resolution, kd-tree and oc-
tree based methods hierarchically partition space to exploit
input sparsity [23, 38]. But those methods focus more on
subdivision of a volume rather than local geometric struc-
ture. An important architectural model that directly pro-
cesses point sets is PointNet [32], which aggregates fea-
tures from points using a symmetric function. To im-
prove the ability to handle local feature extraction, Point-
Net++ [34] aggregates features in local regions hierarchi-
cally. However, these methods still ignore the geometric
structure amongst points by treating points independently
in the global or local point sets.

One recent attempt to model geometric relationships
between points is EdgeConv [49], which extracts fea-
tures from each point and its local k-nearest-neighborhood.
EdgeConv extracts edge features between a center point and
its neighboring points. The geometric structure between
two points p and q is represented by the vector ~pq. How-
ever, EdgeConv only models the distance between points
(which is the norm of ~pq) when constructing the neighbor-
hood, and it ignores the direction of the vector, which leads
to loss of local geometric information. Considering that
3D coordinates are given at the input level of most point
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cloud analysis pipelines, One might reasonably assume that
geometric information might be implicitly learned directly
from the coordinates. However, current methods may have
the following two challenges for geometric modeling: first,
the geometric relationship amongst points may be over-
whelmed by the large variance of the 3D coordinates, which
makes it difficult to be learned from data directly; second,
current methods project the 3D coordinates to some high-
dimensional space, which may not preserve the geometric
structure of the points in the original Euclidean space, espe-
cially when the feature extraction hierarchy is deep.

To address these problems, we propose a novel
convolution-like operation GeoConv to explicitly model the
geometric structure amongst points throughout the hierar-
chy of feature extraction. GeoConv is applied to each point
and its local spherical neighborhood determined by a radius.
As shown in Fig.1, the vector ~pq which represents the ge-
ometric structure between two points, can be decomposed
into three orthogonal bases. Based on this vector decompo-
sition, we project the edge features between the two points
into three fixed orthogonal bases (the ~x, ~y, ~z in Fig.1) and
apply direction-associated weight matrices (W~x,W~y,W~z

in Fig.1) to extract features along each direction; then we
aggregate them proportional to the angle between ~pq and
the bases (θ ~pq,~x, θ ~pq,~y, θ ~pq,~z in Fig.1). By decomposing the
edge feature extraction process into three orthogonal direc-
tions, we reduce the variance of the absolute coordinates of
the point cloud, and encourage the network to learn edge
features along each basis independently; by aggregating the
features according to the geometric relationship between the
edge vector and the bases, we explicitly model the geomet-
ric structure amongst points. Learning in this fashion de-
composes the complex geometric structure learning prob-
lem into simpler ones while still preserving geometric in-
formation. Finally, to extract local features of the center
point, we weight the edge features from all points in the lo-
cal neighborhood based on the norm of ~pq. Another advan-
tage of GeoConv is that it enables feature level multi-view
augmentation. Our decomposition-aggregation method en-
ables us to approximate the rotation of point clouds at the
feature level via re-weighting the features by manipulating
the angles.

By stacking multiple layers of GeoConv with increas-
ing size of neighborhoods, we construct Geo-CNN, to hier-
archically extract features with increasing receptive fields.
We aggregate the features from all points by channel-wise
max pooling to maintain permutation invariance. Geo-CNN
is a generic module that models local geometric structure of
points. It can be easily integrated into different pipelines for
3D point cloud analysis, e.g., 3D shape classification, seg-
mentation and object detection. We evaluate Geo-CNN on
ModelNet40 [50] and KITTI [16] and achieve state-of-the-
art performance.

2. Related Work
Motivated by the recent development in 3D sensor tech-

nology, increasing attention has been drawn to developing
efficient and effective representations on 3D point clouds
for shape classification, shape synthesis and modeling, in-
door navigation, 3D object detection, etc.[46, 52, 53, 43,
21, 56, 45, 39, 1, 24, 51, 36, 9, 11]. Some earlier works
constructed hand-crafted feature descriptors to capture lo-
cal geometric structure and model local similarity between
shapes [2, 6, 3, 19, 41, 40]. More recently, deep neural net-
works have been used to learn representations directly from
data. One intuitive way to model the unstructured geomet-
ric data is voxelization, which represents a point cloud as
a regular 3D grid over which 3D ConvNets can be easily
applied [62, 33, 50, 30, 5, 4, 10, 28]. However, volumet-
ric methods usually produce 3D grids which are sparsely
occupied in the space. Their exponentially growing com-
putational cost associated with making the grid finer limits
the resolution in each volumetric grid, and leads to quanti-
zation artifacts. Due to its regular structures and scalability
compared to uniform grids, some indexing techniques such
as kd-tree and octree have also been applied to model point
clouds [23, 38], but those methods still focus more on sub-
division of a volume rather than modeling local geometric
structure.

To directly model each 3D point individually, PointNet
[32], PointNet++ [34] and their variations [31, 26] aggre-
gated point features by a symmetric function to construct a
global descriptor. Instead of working on individual points,
some recent works exploited local structures by construct-
ing a local neighborhood graph and applying convolution-
like operations on the edges connecting neighboring pairs
of points [49]. However, in contrast to our proposed Geo-
CNN, all of the above methods do not explicitly model
the geometric structure of 3D points, which is represented
by the norm and orientation of the vector between two
points. Our proposed GeoConv operation models the geo-
metric structure of points by a decomposition and aggrega-
tion method based on vector decomposition, and can be eas-
ily integrated into different pipelines for 3D object recogni-
tion, segmentation and detection tasks [34, 32, 31, 62].

Instead of modeling the native 3D format of a point
cloud, view-based techniques represent a 3D object as a
collection of 2D views, which is compatible with standard
CNNs used for image analysis tasks [33, 44, 22, 7, 59].
To aggregate information from different orientations of a
3D object, multi-view methods are applied to pool the fea-
tures extracted from different rendered 2D views, and usu-
ally yield better performance than using a single view. In-
spired by this, we augment different orientations of the 3D
points via approximating rotations of the input point clouds
at feature level to further improve the performance of our
model.



3. Our Approach

We propose a generic operation GeoConv to explicitly
model the geometric structure in a local region. By stack-
ing several layers of GeoConv with increasing receptive
field, we construct a Geometric-induced Convolution Neu-
ral Network (Geo-CNN) to hierarchically extract features
that preserve the geometric relationships among points in
Euclidean space. We then aggregate the features from each
point by channel-wise max-pooling to extract a global fea-
ture descriptor of point clouds.

3.1. Hierarchical Feature Extraction with Geo-
CNN

With a set of 3D points as input, we exploit local ge-
ometric structure by applying a convolutional-like opera-
tion (GeoConv) on each point and its local neighborhood.
We build the Geo-CNN by stacking multiple GeoConv lay-
ers with increasing neighborhood size. We progressively
enlarge the receptive field of the convolution and abstract
larger and larger local regions, to hierarchically extract fea-
tures and preserve the geometric structure of points along
the hierarchy (as shown in (a) of Fig.2).

Consider a C dimensional point cloud with n points. We
denote the feature of point p at the lth layer of Geo-CNN
as Xl

~p ∈ RC . Usually the 3D points at the input level are
represented by their 3D coordinates, but we could also in-
clude additional features to represent appearance, surface
normal, etc. For each point p, we construct its local neigh-
borhood using a sphere centered at that point with radius
r. GeoConv is applied on point p and all points q in the
neighborhood N(~p), where N(~p) = {~q | ‖~p − ~q‖ 6 r}.
The general formula of GeoConv operation applied at the
neighborhood of point p at layer l + 1 is:

Xl+1
~p =s(~p) +

∑
~~q∈N(~p)

h(~p, ~q, r)

=WcX
l
~p +

∑
~~q∈N(~p)

d(~p, ~q, r)g(~p, ~q)∑
~q∈N(~p) d(~p, ~q, r)

(1)

where we aggregate features from the center point ~p and
the edge features that represent the relationship between the
center point and its neighboring points. Wc is the weight
matrix used to extract features from the center point. g(~p, ~q)
is the function that models edge features, and we weight the
features from different neighboring points according to the
distance between point ~p and ~q using d(~p, ~q, r) as:

d(~p, ~q, r) = (r − ‖~p− ~q‖)2 (2)

d(~p, ~q, r) satisfies two desired properties: (1) monotonically
decreasing with ‖~p − ~q‖; (2) as r increases, which means
as the receptive field of our operation becomes larger, the

difference of the weight function d(·) between points that
have similar distance to the center point p will decrease.

After several GeoConv layers, we apply channel-wise
max-pooling to aggregate features of each individual point
to construct a global feature descriptor of the point cloud.
This feature descriptor can be fed into a classifier for 3D
shape recognition, segmentation or detection network. Geo-
Conv is a generic operator that can be easily integrated
into current 3D point set analysis pipelines to extract local
features while preserving geometric structure in Euclidean
space.

3.2. GeoConv: Local Geometric Modeling with
Basis-based Decomposition and Aggregation

The most important part of the GeoConv operation is
the way it models edge features. A straightforward way
would be to apply a neural network or multi-layer percep-
tron (MLP) to compute its activation against each edge.
However, this method could easily suffer overfitting due to
the large variance of edge geometry, which is represented by
the vector ~pq. On the other hand, the above operation may
also project the features into some high dimensional space,
where the original Euclidean geometric structure among
points is not preserved. In 3D Euclidean space, any vector
can be represented by its projection on the three orthogo-
nal bases (~x, ~y, ~z), and the projection norm of the vector on
each basis represents the "energy" along that direction. So,
we decompose the process of edge feature extraction using
the three orthogonal bases: we apply direction-associated
weight matrices W~b to extract edge features along each di-
rection independently. Then, we aggregate the direction-
associated features based on the projection of the vector ~pq
on each basis to preserve geometric structure. In practice,
to differentiate between positive and negative directions of
each basis, we consider six bases represented as:

B = {(1, 0, 0), (−1, 0, 0), (0, 1, 0),
(0,−1, 0), (0, 0, 1), (0, 0,−1)}

(3)

As shown in (c) of Fig.2, the six bases separate the space
into 8 quadrants, and any vector in a specific quadrant can
be composed by three bases out of B. Given a neighbor-
ing point q, we first localize the quadrant it lies in (we con-
sider a relative coordinate system by setting p as the origin).
Then we project the vector ~pq onto the three bases of this
quadrant, and compute the angle between ~pq and each ba-
sis (shown in Fig.2 (d)). We apply the direction-associated
weight matrices represented as W~b to extract the compo-
nent of edge features along each direction, and aggregate
them as shown below:

g(~p, ~q) =
∑
~b∈B~q

cos2(θ ~pq,~b)W~bX
l
~q (4)
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Figure 2. Geo-induced Convolution Neural Network (Geo-CNN). We apply Geo-CNN to hierarchically extract feature representations from
a point set. For each point p, GeoConv is applied to its local spherical neighborhood defined by a radius r. We enlarge the receptive field
of GeoConv by increasing r at higher levels of the network (shown as the larger circles in (a)). In the local neighborhood of p, we compute
the edge features between point p and all neighboring points q′s, and weight them with a distance measurement function d(·) as shown
in (b). To extract the edge features between point p and q, we first localize the quadrant that point q belongs to, in a coordinate system
with p as its origin, as illustrated in (c). Then, we compute the edge features along the three bases of that quadrant by direction-associated
weight matrices represented as W~x,W~y,W~z , and aggregate them according to the angles between vector ~pq and the three bases, shown
as θ ~pq,~x, θ ~pq,~y, θ ~pq,~z in (d-e).

where Xl
~q is the feature of point q at the lth layer, and B~q is

a set consisting of three bases selected from B according to
the quadrant in which point ~q lies. The feature along each
direction is aggregated with the coefficients cos2(θ ~pq,~b),
which corresponds to the square of the ratio between the
norm of each projected component of ~pq and the norm of
~pq, and they naturally sum to 1.

By modeling edge geometry using the basis-based de-
composition, our network learns to extract representations
for each direction independently. This reduces the com-
plexity of the learning task, when compared with directly
learning from the large variance of input 3D coordinates.
By aggregating the features along each basis, we explic-
itly model geometric structure of the edge vector between
each point and its neighbors. By learning geometric mod-
eling using GeoConv, we model and preserve the geometric
structure of 3D point clouds at every level of our hierarchi-
cal feature extraction framework.

3.3. Approximating 3D Multi-view Augmentation
at the Feature Level using Geo-CNN

Inspired by previous works [44, 22] that aggregate infor-
mation of a 3D object by utilizing rendered 2D images with
different virtual camera views, we can also sample from
different orientations by rotating 3D points, and then pool
the multi-view representations to augment information from
different views. In the 3D space, any rotation of the point
clouds can be decomposed into the rotation around the ~z

axis and around the plane spanned by ~x and ~y. For simplic-
ity, "rotation" in this paper refers to rotation around the ~z
axis; our analysis can be easily expanded to other cases.

A naive way to incorporate multiple 3D views at training
time is to use the rotated point sets as data augmentation, but
this method usually leads to even worse performance in our
baseline as well as our implementation of some other works
(e.g., [34, 32]). A possible reason is that the current meth-
ods cannot efficiently learn a compact model from the large
variance introduced by multiple 3D views. An alternative
is to train a specific model for each 3D view and aggregate
the output of multiple networks, which will dramatically in-
crease model complexity.

Instead of input-level multi-view augmentation, we ap-
proximate rotation at the feature level in our network using
the GeoConv operation. This is done by sharing the compu-
tations on edge features along different directions and only
changing the aggregation model. Specifically, we approx-
imate multi-view training and testing by manipulating the
aggregation step in GeoConv:

gMV (~p, ~q) =
∑
v∈V

wv

∑
~b∈B~q

cos2(θ ~pqv,
~b)W~bX~q (5)

where wv are learned weights to fuse multi-view features;
θ ~pqv,

~b are the re-computed angles between the rotated edge
vector and the fixed bases.
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Figure 3. Implementation of GeoConv. The filled boxes show the
point features with their dimensionality. The black boxes are the
operations. We employ a bottleneck-like structure to first use our
decomposition-aggregation method to extract edge features with
a lower dimensionality, and then enlarge the dimensionality to
match the features extracted from the center point. We aggregate
edge features from each point following Eq.(1).

4. Implementation Details
4.1. GeoConv Module

The input/output of a GeoConv layer is n × Cin and
n×Cout, where n is the number of points, Cin andCout are
the input/output dimensionality of each point feature. For
each point, we construct its local spherical neighborhood
defined by a hyper-parameter r. We apply a weight matrix
Wc with size Cin×Cout to extract features from the center
point. For edge feature extraction, we apply a bottleneck
module inspired by ResNet[20] to first extract features with
lower-dimension Creduc (we refer to this layer as "reduc-
tion layer"), and then enlarge their dimensionality as shown
in Fig.3. The hyper-parameter of GeoConv is the radius r.
In practice, we split the training data into training and val-
idation set and apply cross-validation to choose the radius
for each layer.

4.2. Geo-CNN for 3D Shape Classification

For 3D shape classification on ModelNet40 [50], we ran-
domly sample 1,000 points from the 3D model of an ob-
ject. The input features are the 3D coordinates and the
surface normal (6 input channels in total). Geo-CNN has
two branches: (1) similar to PointNet++[34], we sample 16
nearest-neighbors from each of the 1,000 points and apply
three fully-connected (FC) layers with output dimentional-
ity as 64-128-384 on each group of 16 points. The output
size is 1 × 384 for each of the 1000 point. (2) For the sec-
ond branch, we feed the same input points into an FC layer
to project them into a 64-dim feature space. Then we ap-
ply the first GeoConv layer with Cin = 64, Creduc = 64
and Cout = 128. An FC layer with 256 output channels
and a GeoConv layer with Cin = 256, Creduc = 64 and
Cout = 512 follow. At this point, we channel-wisely con-
catenate the features extracted from the two branches to ob-
tain an 896-dim feature vector for each point. Next, we

apply the third GeoConv with Cin = 896, Creduc = 64
and Cout = 768 followed by the last FC layer with 2048-
dim output. Channel-wise max-pooling is then applied to
aggregate features from all points. We conduct shape clas-
sification on the pooled global feature descriptor. The radius
for constructing local neighborhoods for the three GeoConv
layers are 0.15, 0.3 and 0.6 (the 3D coordinates are normal-
ized in ModelNet40). Batch-normalization and ReLU are
applied after every FC layer and each reduction layer in the
GeoConv module.

4.3. Geo-CNN for 3D Object Detection

As a generic feature extraction module, Geo-CNN can
be easily applied in any pipeline for point-based 3D object
detection. We follow Frustum PointNet V1 pipeline and
replace some layers in the segmentation network with Geo-
Conv layers. There are 3 MLP modules in the 3D Instance
Segmentation PointNet of Frustum V1 [31] with 9 FC lay-
ers in total for feature extraction. We directly replace all of
the FC layers with the GeoConv layers. For fair compari-
son, the output dimensionalities of the GeoConv layers are
exactly the same as the replaced FC layers. The radii of the
2 layers in the first MLP block are 0.15-0.2; the radii for the
3 layers in the second block are 0.3-0.4-0.4; for the 4 lay-
ers in the third block, the radii are 0.3-0.2-0.1-0.1. We also
explored replacing the FC layers in the box estimation mod-
ule of Frustum PointNet, but obtained slightly worse results.
One possible reason is that when comparing with segmen-
tation, bounding box regression depends more on modeling
global information of an object, rather than modeling geo-
metric structures of local point sets.

For the 3D object detection pipeline, we construct frus-
tums based on 2D box proposals generated by the object
detection pipeline (similar to 2D object detection methods
[35, 17, 14, 13]) in [31]. Then, the Point Segmentation Net-
work with GeoConv is applied to categorize the points on
the object in each frustum and eliminate the noise caused
by background point clouds. Finally, we use the same Box
Estimation Network as [31] to obtain the orientation, size
and centroid of the 3D bounding box. The implementation
of GeoConv is the same as ModelNet.

4.4. Baselines

Our baselines have very similar architecture with Geo-
CNN, with two difference in the edge feature extraction
process: first, baselines fuse the edge features from dif-
ferent points by simply averaging them, unlike GeoConv
which weights the features based on the distance measure-
ment d(·); second, at the reduction layer, GeoConv utilizes
three separate weights along each direction, while the base-
line applies a single weight matrix to extract edge features.



5. Experiments

To demonstrate the effectiveness of Geo-CNN on mod-
eling 3D point clouds, we evaluate it on 3D shape classifi-
cation using ModelNet40 [50] with CAD-generated points.
In addition, a more practical application of 3D point clouds
analysis is autonomous driving, which involves 3D point
clouds acquired from 3D sensors such as LIDAR. Since
GeoConv is a generic operation that can be easily applied in
standard pipelines analyzing 3D point clouds, we integrate
it into the recent Frustrum PointNet framework to evaluate
on 3D object detection using KITTI[16].

5.1. 3D Shape Classification on CAD-Generated 3D
Point Clouds

5.1.1 Dataset

We first evaluate our model on the ModelNet40 [50] data
with 3D point clouds generated from CAD. There are
12,311 CAD models from 40 object categories, with 9,843
training and 2,468 testing samples. The CAD models are
represented by vertices and faces. For fair comparisons with
previous works, we use the prepared ModelNet40 dataset
from [34], where each model is represented by 10,000
points. One can also sample various sizes of point clouds,
e.g., 1000 or 5,000, from the point set.

5.1.2 Comparison with other Methods

Table 1 shows the comparison between our Geo-CNN and
prior methods. Geo-CNN achieves state-of-the-art perfor-
mance on the object classification task with both evaluation
metrics of ModelNet401. Our baseline achieves similar per-
formance with the state-of-the-art PointNet++[34]. By sim-
ply changing the operation on modeling the edge features in
a local point set from a fully-connected layer to GeoConv,
we obtain a gain of 1.6%, which demonstrates the effec-
tiveness of our geometrical modeling method. By further
approximating 3D multi-view at the feature level, we obtain
a further 0.5% performance gain. We implement the multi-
view approximation by virtually rotating the point clouds
around the z-axis from 0 to 360 degrees. We uniformly ap-
proximate 30 views 2 following Eq.(5). Our method, which
is applied directly on point clouds, even outperforms sin-
gle networks with multi-view images, e.g., [33] (92%) and
[44](90.1%), and achieves comparable performance with
the method integrated multiple networks in [33] (93.8%).
However, our single model Geo-CNN with approximated
multi-view learning at feature level is more scalable and

1Since the two metrics are very similar, "performance" on this dataset
refers "Accuracy Overall" metric.

2The performance gain of multi-view approximation is robust to the
number of views from 10 to 40, with less than ±0.1 changes.

Table 1. ModelNet40 Shape Classification Results. We sort the
previous methods by time.

Method
Accuracy
Overall

Accuracy
Class

PointNet[32] 89.2 86.2
PointNet++[34] 91.9 -
DeepSets[61] 90.3 -

ECC[42] 87.4 83.2
OctNet[38] 86.5 83.8
O-CNN[48] 90.6 -
Kd-Net[23] 91.8 88.5

EdgeConv[49] 92.2 90.2
SO-Net[26] 93.4 90.8

SpiderCNN[52] 92.4 -
SCN[51] 90.0 87.6

MRTNet[12] 91.7 -
SpecGCNN[47] 92.1 -

Our baseline 91.8 88.2
Geo-CNN 93.4 91.1

Geo-CNN+ MV-Approx. 93.9 91.6

flexible compare to multi-view representations using mul-
tiple networks.

5.2. 3D Object Detection on LIDAR Points

Prior methods on 3D point cloud analysis were mostly
evaluated exclusively on artificially generated data. How-
ever, with the development of 3D sensing techniques, 3D
point clouds can be easily acquired in many real world ap-
plications, e.g., autonomous driving. The distribution of
real point clouds could vary significantly from generated
points. For instance, generated data contains dense points
from various orientations. However, point clouds obtained
by sensors, e.g., LIDAR, only contain points from frontal
surfaces due to occlusion. Moreover, LIDAR point clouds
are noisier and contain a large amount of background, while
generated point clouds contain pure on-object points. Eval-
uation on real data such as point clouds collected by LIDAR
is very important to show the robustness and practicality of
a 3D point cloud analysis method. To illustrate the effec-
tiveness of Geo-CNN on real-world 3D points, we evaluate
on 3D object detection using the KITTI dataset [16].

5.2.1 Dataset

The KITTI 3D object detection benchmark contains 7,481
training and 7,518 testing images/point clouds with three
object categories: Car, Pedestrian, Cyclist. For each class,
detection outcomes are evaluated based on three difficulty
levels: easy, moderate, and hard. The level of difficulty is
based on object size, occlusion state, and truncation level.
For fair comparison with the state-of-the-art detection meth-
ods, we directly replace the PointNet feature extraction
module in the Frustum PointNet v1 [31] detection pipeline



Method Cars Pedestrians Cyclists
Easy Moderate Hard Easy Moderate Hard Easy Moderate Hard

VoxelNet[62] 81.97 65.46 62.85 57.86 53.42 48.87 67.17 47.65 45.11
Frustum PointNet v1[31] 83.33 69.00 61.97 71.65 53.43 49.20 67.29 56.74 49.84
Frustum PointNet v2[31] 83.42 70.40 63.37 70.51 55.31 52.11 64.30 57.33 50.43

Baseline 84.56 69.16 62.50 72.32 51.36 47.70 64.68 55.59 48.45
Frustum Geo-CNN 85.09 71.02 63.38 75.64 56.25 52.54 69.64 60.50 52.88

Table 2. Performance Comparison in 3D Object Detection: average precision (in %) on KITTI validation set. Geo-CNN achieves sig-
nificantly better performance when compared with the baseline, which demonstrates the effectiveness of our decomposition-aggregation
method on modeling local geometry. Our Frustum Geo-CNN is implemented based on Frustum PointNet v1, and it outperforms both
Frustum PointNet v1 and v2.

with Geo-CNN, and use the 2D bounding box proposals re-
leased by [31] in our experiments. Since only train/val pro-
posals of frustum pointnet are published, we conduct eval-
uation using the protocol described in [31, 62] and use their
training/testing split.

5.2.2 Comparison with other Methods

Table 5.2 shows the evaluation results on KITTI 3D object
detection. Our implementation of the detection pipeline is
based on Frustum PointNet v1, which involves object pro-
posals in 2D object detection [35, 17, 58, 25, 57]. The
performance of v1 was surpassed by Frustum PointNet v2,
which has a more complex architecture. However, by re-
placing the PointNet feature extraction module in the seg-
mentation network of v1 with GeoConv, Frustum with Geo-
CNN outperforms both Frustum PointNet v1 and v2. The
performance of Frustum v1 and v2 on the validation set is
evaluated based on the released code of [31], and it is very
similar with the performance reported in [31]. We visualize
the detection results of Frustum with Geo-CNN on 2D and
3D images in Fig.4.

5.3. Ablation Study

Can we model local geometry by directly learning from
3D coordinates? We study different ways to model local
geometry between points in the feature extraction hierar-
chy. Since the geometric structure is encoded in the 3D
coordinates of points, one straightforward way to learn ge-
ometric structure is to apply an FC layer to directly learn
from the coordinates. However, previous hierarchical fea-
ture extraction methods project the 3D coordinates input
to some high-dimensional feature space at the first layer of
their networks, which may lead to the loss of the Euclidean
geometry amongst points. Our baseline method takes the
3D coordinates at the input level to directly learn the geo-
metric structure implicitly. To preserve the Euclidean ge-
ometry throughout the feature extraction hierarchy, we ap-
ply an FC layer to learn the geometric structure between
points directly from the 3D coordinates of point p and q at
every layer of our baseline model, and concatenate the ex-

Accuracy Overall

Baseline 91.8
Baseline + 3D Coords 91.7

GeoConv - Learned-Agg 91.5
GeoConv 93.4

Table 3. Ablation Study: Different Geometric Modeling Meth-
ods. We study different ways to model local geometry amongst
points using ModelNet40 dataset. "Baseline + 3D Coords" directly
learns the geometric structure with 3D coordinates of the two
points at every layer of the network; "GeoConv - Learned-Agg"
aggregates the direction-associated features by learned weights.

tracted features with the original ones channelwisely. We
refer to this method as "Baseline + 3D Coords". We also in-
vestigated alternative approaches to model the angle of the
vector ~pq in GeoConv. Instead of using g(·) function as pro-
posed, we directly learn these aggregation coefficients using
an FC layer with the 3D coordinates of point p and q as in-
put. We refer to this method as "GeoConv - Learned-Agg".
As shown in Table 3, directly learning geometric structure
between points or the coefficients to aggregate the decom-
posed features from the 3D coordinates does not help. This
reveals that modeling the local geometry is non-trivial, and
GeoConv effectively captures geometric structures amongst
points to improve the feature extraction framework.

Does the performance gain of GeoConv come from in-
creasing model complexity? By decomposing the edge
feature extraction process into three directions using sep-
arate neural networks, GeoConv increases the number of
parameters in the reduction layer of edge feature extraction.
The number of parameters for the edge feature extraction
operation is Cin ∗ nbases ∗ Creduc + Creduc ∗ Cout, where
Cin and Cout are the input/output channel numbers. creduc
is the output channel number of the channel reduction step,
and the difference between GeoConv and the baseline is
nbases (nbases = 6 for GeoConv and nbases = 1 for the
baseline). We increase creduc from 64-64-64 to 192-192-
256 for the three reduction layers in the baseline model to
roughly match the number of parameters for edge feature



Figure 4. We visualize the detection results on KITTI with 2D and 3D images. The red boxes are the groundtruth boxes and the blue boxes
are the prediction results. Some of the false positive detection results are because of missing annotation.

Method Baseline Baseline-Large GeoConv
Accuracy Overall 91.8 91.7 93.4

#. of parameters for
edge feature extraction 167.9K 610.8K 557.1K

Table 4. Ablation Study: Model Complexity. We add channels
to the weight matrix of the reduction layer of the baseline method
(Baseline-Large) to match the number of parameters of GeoConv.
We show the sum of number of parameters of the 3 reduction lay-
ers in each model. The results on ModelNet40 shows that simply
increasing model complexity does not help.

Method Accuracy Overall
Baseline 91.8

Baseline + Data Aug. 91.6
Geo-CNN 93.4

Geo-CNN + Data Aug. 92.6
Geo-CNN + MV-Approx. 93.9

Table 5. Overall Accuracy on ModelNet40 with Different Multi-
view Augmentations. "Data Aug." and "MV-Approx." refer to
input-level augmentation and our feature-level multi-view approx-
imation.

extraction of GeoConv operation. The enlarged baseline is
referred to as "Baseline-Large" shown in Table 5.3, which is
evaluated on the ModelNet40 classification task. It is worth
noting that the number of parameters in the reduction lay-
ers accounts for a very small portion of the total number of
parameters, and the experiment setting of the other compo-
nents of the networks except for the reduction layers, are
exactly the same for both baseline and Geo-CNN. It is clear
that simply enlarging the number of channels does not im-
prove performance, and the gain of GeoConv is not due to
the increasing number of parameters.

3D Multi-view Augmentation. We evaluate the effect of
our feature-level multi-view augmentation. As a straightfor-
ward way to incorporate multi-view information to the net-
work learning process, one can simply rotate the input point
clouds randomly as data augmentation at training time. On
the other hand, our proposed decomposition-aggregation
method in GeoConv enables us to approximate 3D multi-
view augmentation at the feature level. Table 5.3 shows the
performance of input-level multi-view augmentation and
feature-level approximation on ModelNet40 dataset. We
observe that input-level multi-view data augmentation leads
to performance degradation of both the baseline method
and Geo-CNN. One possible reason is that the input-level
data augmentation brings in large variance between differ-
ent views, which cannot be properly learned with a single
compact model. Another possible solution is to learn sep-
arate models with different views and then aggregate them.
However, the models with multiple networks are less flexi-
ble and scalable due to their high complexity.

6. Conclusion
We address the problem of modeling local geometric

structure amongst points with GeoConv operation and a hi-
erarchical feature extraction framework dubbed Geo-CNN.
Inspired by the success of exploiting local structure using
CNNs on 2D image analysis task, we propose to extract
features from each point and its local neighborhood with
a convolutional-like operation. GeoConv explicitly models
the geometric structure between two points by decompos-
ing the feature extraction process onto three orthogonal di-
rections, and aggregating the features based on the angles
between the edge vector and the bases. The Geo-CNN with



GeoConv operation achieves state-of-the-art performance
on the challenging ModelNet40 and KITTI datasets.
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